An In2O3 nanowire-like network fabricated on coplanar sensor surface by sacrificial CNTs for enhanced gas sensing performance

[1]  N. Hoa,et al.  General and scalable route to synthesize nanowire-structured semiconducting metal oxides for gas-sensor applications , 2013 .

[2]  Hyunsung Ko,et al.  Synthesis of nanograined ZnO nanowires and their enhanced gas sensing properties. , 2012, ACS applied materials & interfaces.

[3]  Kijung Yong,et al.  CuO/ZnO Heterostructured Nanorods: Photochemical Synthesis and the Mechanism of H2S Gas Sensing , 2012 .

[4]  P. P. Sahay,et al.  Structural, optical and methanol sensing properties of sprayed In2O3 nanoparticle thin films , 2012 .

[5]  Sunghoon Park,et al.  Synthesis, structure, and room-temperature gas sensing of multiple-networked Pd-doped Ga2O3 nanowires , 2012 .

[6]  Yangong Zheng,et al.  Formaldehyde gas sensor based on SnO2/In2O3 hetero-nanofibers by a modified double jets electrospinning process , 2012 .

[7]  Yao Peng-jun,et al.  Synthesis and Gas Sensitivity of In 2 O 3 /CdO Composite , 2012 .

[8]  Changsheng Xie,et al.  Solution-Processed Gas Sensors Based on ZnO Nanorods Array with an Exposed (0001) Facet for Enhanced Gas-Sensing Properties , 2012 .

[9]  Huilan Su,et al.  Bioinspired Hierarchical Tin Oxide Scaffolds for Enhanced Gas Sensing Properties , 2012 .

[10]  Michelle J. S. Spencer,et al.  Gas sensing applications of 1D-nanostructured zinc oxide: Insights from density functional theory calculations , 2012 .

[11]  Xiaoping Shen,et al.  Facile fabrication and enhanced sensing properties of hierarchically porous CuO architectures. , 2012, ACS applied materials & interfaces.

[12]  Xun Wang,et al.  Morphology-controlled synthesis of hematite nanocrystals and their facet effects on gas-sensing properties. , 2011, Inorganic chemistry.

[13]  E. Llobet,et al.  Gas sensing with Au-decorated carbon nanotubes. , 2011, ACS nano.

[14]  Nguyen Duc Hoa,et al.  Preparing large-scale WO3 nanowire-like structure for high sensitivity NH3 gas sensor through a simple route , 2011 .

[15]  Hyunsu Kim,et al.  Synthesis, Structure, Photoluminescence, and Raman Spectrum of Indium Oxide Nanowires , 2011 .

[16]  Changsheng Xie,et al.  Controlled growth of SnO2 nanorods clusters via Zn doping and its influence on gas-sensing properties , 2010 .

[17]  Zhipeng Li,et al.  In2O3 Nanofibers and Nanoribbons: Preparation by Electrospinning and Their Formaldehyde Gas-Sensing Properties , 2010 .

[18]  Dongsheng Xu,et al.  Electrochemical synthesis and applications of oriented and hierarchically quasi-1D semiconducting nanostructures , 2010 .

[19]  Thorsten Wagner,et al.  Gas sensor based on ordered mesoporous In2O3 , 2009 .

[20]  Seeram Ramakrishna,et al.  Electrospun nanofibers as a platform for multifunctional, hierarchically organized nanocomposite , 2009 .

[21]  P. Chu,et al.  A unique technology to transform inorganic nanorods into nano-networks , 2009, Nanotechnology.

[22]  Yong Jia,et al.  Preparation of Porous Tin Oxide Nanotubes Using Carbon Nanotubes as Templates and Their Gas-Sensing Properties , 2009 .

[23]  Jinyun Liu,et al.  Shape- and phase-controlled synthesis of In2O3 with various morphologies and their gas-sensing properties , 2009 .

[24]  Zhi-xuan Cheng,et al.  Indium Oxide with Novel Morphology: Synthesis and Application in C2H5OH Gas Sensing , 2009 .

[25]  Thorsten Wagner,et al.  Ordered Mesoporous In2O3: Synthesis by Structure Replication and Application as a Methane Gas Sensor , 2009 .

[26]  Nguyen Duc Hoa,et al.  Tin-oxide nanotubes for gas sensor application fabricated using SWNTs as a template. , 2008, Journal of nanoscience and nanotechnology.

[27]  Ting Chen,et al.  A high sensitivity gas sensor for formaldehyde based on CdO and In2O3 doped nanocrystalline SnO2 , 2008, Nanotechnology.

[28]  Hyunjun Yoo,et al.  Template-Directed Synthesis of Oxide Nanotubes: Fabrication, Characterization, and Applications† , 2008 .

[29]  F. Kruis,et al.  Enhanced gas sensing properties of In2O3:Ag composite nanoparticle layers; electronic interaction, size and surface induced effects , 2007 .

[30]  N. Du,et al.  Porous Indium Oxide Nanotubes: Layer‐by‐Layer Assembly on Carbon‐Nanotube Templates and Application for Room‐Temperature NH3 Gas Sensors , 2007 .

[31]  Joseph R. Stetter,et al.  Kinetics of indium oxide-based thin film gas sensor response: The role of “redox” and adsorption/desorption processes in gas sensing effects , 2007 .

[32]  C. Kiparissides,et al.  Assessment of particle agglomeration in catalytic olefin polymerization reactors using rheological measurements , 2006 .

[33]  Guo-Li Shen,et al.  Gas sensing properties of tin dioxide coated onto multi-walled carbon nanotubes , 2006 .

[34]  Deren Yang,et al.  Gas sensing behavior of polyvinylpyrrolidone-modified ZnO nanoparticles for trimethylamine , 2006 .

[35]  Kengo Shimanoe,et al.  Nanotubular SnO2 Templated by Cellulose Fibers: Synthesis and Gas Sensing , 2005 .

[36]  C. Xie,et al.  The gas-sensing properties of thick film based on tetrapod-shaped ZnO nanopowders , 2005 .

[37]  Yigal Komem,et al.  The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors , 2004 .

[38]  R. Caruso,et al.  Template Synthesis and Photocatalytic Properties of Porous Metal Oxide Spheres Formed by Nanoparticle Infiltration , 2004 .

[39]  G. Park,et al.  Ruthenium Oxide Nanotube Arrays Fabricated by Atomic Layer Deposition Using a Carbon Nanotube Template , 2003 .

[40]  Eric S. Snow,et al.  Random networks of carbon nanotubes as an electronic material , 2003 .

[41]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[42]  Geoffrey A. Ozin,et al.  Tin dioxide opals and inverted opals: near-ideal microstructures for gas sensors , 2001 .

[43]  O Kiesewetter,et al.  Gas sensing properties of thin- and thick-film tin-oxide materials , 2001 .

[44]  Haydn Chen,et al.  Comparison study of SnO2 thin- and thick-film gas sensors , 2000 .

[45]  J. Lehn,et al.  Molecular recognition of nucleosides and nucleotides by a water-soluble cyclo-bis-intercaland receptor based on acridine subunits , 1995 .

[46]  Udo Weimar,et al.  Comparison of ceramic, thick-film and thin-film chemical sensors based upon SnO2 , 1992 .

[47]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[48]  N. Yamazoe New approaches for improving semiconductor gas sensors , 1991 .

[49]  Henry Windischmann,et al.  A Model for the Operation of a Thin‐Film SnO x Conductance‐Modulation Carbon Monoxide Sensor , 1979 .

[50]  C. Xie,et al.  Effect of Zinc Doping on Microstructures and Gas-Sensing Properties of SnO2 Nanocrystals , 2012 .

[51]  Matteo Ferroni,et al.  Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors , 2009 .

[52]  Li Zhang,et al.  Nanorobotic spot welding: controlled metal deposition with attogram precision from copper-filled carbon nanotubes. , 2007, Nano letters.