Carboxylate-assisted transition-metal-catalyzed C-H bond functionalizations: mechanism and scope.
暂无分享,去创建一个
The site-selective formation of carbon-carbon bonds through direct functionalizations of otherwise unreactive carbon-hydrogen bonds constitutes an economically attractive strategy for an overall streamlining of sustainable syntheses. In recent decades, intensive research efforts have led to the development of various reaction conditions for challenging C-H bond functionalizations, among which transition-metal-catalyzed transformations arguably constitute thus far the most valuable tool. For instance, the use of inter alia palladium, ruthenium, rhodium, copper, or iron complexes set the stage for chemo-, site-, diastereo-, and/or enantioselective C-H bond functionalizations. Key to success was generally a detailed mechanistic understanding of the elementary C-H bond metalation step, which depending on the nature of the metal fragment can proceed via several distinct reaction pathways. Traditionally, three different modes of action were primarily considered for CH bond metalations, namely, (i) oxidative addition with electronrich late transition metals, (ii) σ-bond metathesis with early transition metals, and (iii) electrophilic activation with electrondeficient late transition metals (Scheme 1). However, more recent mechanistic studies indicated the existence of a continuum of electrophilic, ambiphilic, and nucleophilic interactions. Within this continuum, detailed experimental and computational analysis provided strong evidence for novel C-H bond metalationmechanisms relying on the assistance of a bifunctional ligand bearing an additional Lewis-basic heteroatom, such as that found in (heteroatom-substituted) secondary phosphine oxides or most prominently carboxylates (Scheme 1, iv). This novel insight into the nature of stoichiometric metalations has served as stimulus for the development of novel transformations based on cocatalytic amounts of carboxylates, which significantly broadened the scope of C-H bond functionalizations in recent years, with most remarkable progress being made in palladiumor ruthenium-catalyzed direct arylations and direct alkylations. These carboxylate-assisted C-H bond transformations were mostly proposed to proceed via a mechanism in which metalation takes place via a concerted base-assisted deprotonation. To mechanistically differentiate these intramolecular metalations new acronyms have recently been introduced into the literature, such as CMD (concerted metalationdeprotonation), IES (internal electrophilic substitution), or AMLA (ambiphilic metal ligand activation), which describe related mechanisms and will be used below where appropriate. This review summarizes the development and scope of carboxylates as cocatalysts in transition-metal-catalyzed C-H functionalizations until autumn 2010. Moreover, experimental and computational studies on stoichiometric metalation reactions being of relevance to the mechanism of these catalytic processes are discussed as well. Mechanistically related C-H bond cleavage reactions with ruthenium or iridium complexes bearing monodentate ligands are, however, only covered with respect to their working mode, and transformations with stoichiometric amounts of simple acetate bases are solely included when their mechanism was suggested to proceed by acetate-assisted metalation.