Any (controllable) driftless system with m inputs and m+2 states is flat

We show that any controllable driftless system with m inputs and m+2 states is flat and can be put into multi-input chained form by dynamic feedback and coordinate change. The result follows from a classification of Pfaffian systems of two equations.

[1]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[2]  J. Lévine,et al.  On dynamic feedback linearization , 1989 .

[3]  S. Chern,et al.  Exterior Differential Systems , 1990 .

[4]  Jean-Baptiste Pomet,et al.  A non-exact Brunovsky form and dynamic feedback linearization , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[5]  J. Canny,et al.  Nonholonomic Motion Planning , 1992 .

[6]  S. Sastry,et al.  Trajectory generation for the N-trailer problem using Goursat normal form , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[7]  M. Fliess,et al.  Flatness, motion planning and trailer systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[8]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[9]  Philippe Martin,et al.  Nonlinear control and Lie-Backlund transformations: towards a new differential geometric standpoint , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[10]  Richard M. Murray,et al.  Nilpotent bases for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems , 1994, Math. Control. Signals Syst..

[11]  Philippe Martin,et al.  Feedback linearization and driftless systems , 1994, Math. Control. Signals Syst..

[12]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[13]  Philippe Martin,et al.  Any (controllable) driftless system with 3 inputs and 5 states is flat , 1995 .

[14]  S. Shankar Sastry,et al.  A multisteering trailer system: conversion into chained form using dynamic feedback , 1995, IEEE Trans. Robotics Autom..