Graphitic carbon/n-CdTe Schottky-type heterojunction solar cells prepared by electron-beam evaporation

Abstract We report on the analysis of the electrical and photoelectrical properties of graphitic carbon/n-CdTe Schottky-type heterojunction solar cells, which have been prepared by the deposition of transparent graphitic carbon films of nanometer thickness onto freshly cleaved n-CdTe substrates by the electron-beam evaporation technique. The presence of the electrically-active interface states at the heterojunction interface was revealed from the analysis of the dominating current transport at forward and reverse bias and from the capacitance–voltage characteristics. The unoptimized graphitic carbon/n-CdTe Schottky-type heterojunctions possess a rectification ratio of RR  = 1390 and produce a maximum short circuit current density of J sc  = 8.47 mA cm −2 , an open-circuit voltage of V oc  = 0.435 V and fill factor of FF  = 0.37 under standard illumination conditions (100 mW cm −2 AM 1.5).

[1]  M. R. Freeman,et al.  Ultraflat carbon film electrodes prepared by electron beam evaporation. , 2004, Analytical chemistry.

[2]  Narendra Kurra,et al.  Field effect transistors and RC filters from pencil-trace on paper. , 2013, Physical chemistry chemical physics : PCCP.

[3]  J. Rappich,et al.  Electrical and photoelectrical properties of P3HT/n-Si hybrid organic-inorganic heterojunction solar cells , 2013 .

[4]  O. Vigil-Galan,et al.  Chemically-deposited Te layers improving the parameters of back contacts for CdTe solar cells , 2009 .

[5]  V. V. Brus,et al.  Photosensitive Schottky-type heterojunctions prepared by the drawing of graphite films , 2014 .

[6]  Xingcheng Xiao,et al.  A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment , 2014 .

[7]  L. Kosyachenko,et al.  Quantitative assessment of optical losses in thin-film CdS/CdTe solar cells , 2012 .

[8]  K. Hinrichs,et al.  Stability of graphene–silicon heterostructure solar cells , 2014 .

[9]  A. Obraztsov,et al.  Chemical vapor deposition of thin graphite films of nanometer thickness , 2007 .

[10]  Yi Jia,et al.  Graphene‐On‐Silicon Schottky Junction Solar Cells , 2010, Advanced materials.

[11]  V. V. Brus,et al.  Graphite traces on water surface – A step toward low-cost pencil-on-semiconductor electronics and optoelectronics , 2014 .

[12]  Sergio Jiménez-Sandoval,et al.  Micro-Raman spectroscopy: a powerful technique for materials research , 2000 .

[13]  V. V. Brus,et al.  On the impedance spectroscopy of structures with a potential barrier , 2012 .

[14]  F. Guinea,et al.  METAL-SEMICONDUCTOR JUNCTIONS , 1984 .

[15]  K. Hinrichs,et al.  Temperature and light dependent electrical properties of Graphene/n-Si–CH3-terminated solar cells , 2014 .

[16]  V. V. Brus,et al.  On impedance spectroscopy analysis of nonideal heterojunctions , 2012 .

[17]  F. Liu,et al.  Optimizing performance parameters of graphene–silicon and thin transparent graphite–silicon heterojunction solar cells , 2013 .

[18]  Wenjun Zhang,et al.  Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells , 2013 .

[19]  Jan Grym,et al.  Transport properties of metal–semiconductor junctions on n-type InP prepared by electrophoretic deposition of Pt nanoparticles , 2014 .

[20]  A. Ferrari,et al.  Raman spectroscopy of graphene and graphite: Disorder, electron phonon coupling, doping and nonadiabatic effects , 2007 .

[21]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[22]  I. M. Dharmadasa Recent developments and progress on electrical contacts to CdTe, CdS and ZnSe with special reference to BARRIER contacts to CdTe , 1998 .

[23]  R. Yatskiv,et al.  Electrical and optical properties of graphite/ZnO nanorods heterojunctions , 2014 .

[24]  B. Budner,et al.  Characteristics of Carbon Films Deposited by Magnetron Sputtering , 2009 .

[25]  M. Dresselhaus,et al.  Raman spectroscopy in graphene , 2009 .

[26]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[27]  Sefaattin Tongay,et al.  High efficiency graphene solar cells by chemical doping. , 2012, Nano letters.

[28]  X. Mathew,et al.  Spectroscopic ellipsometry investigation of optical and interface properties of CdTe films deposited on metal foils , 2004 .

[29]  J. Donnelly,et al.  The capacitance of p-n heterojunctions including the effects of interface states , 1967 .

[30]  L. Dai,et al.  Graphene-based Schottky junction solar cells , 2012 .

[31]  I. Shih,et al.  Extended Goodman model for series resistance masking on bulky semiconductor junction capacitance , 1990 .

[32]  A. Goodman,et al.  Metal‐Semiconductor Barrier‐Height Measurement by the Differential Capacitance Method—Degenerate One‐Carrier System , 1963 .

[33]  Han‐Ki Kim,et al.  Multilayer graphene films as transparent electrodes for organic photovoltaic devices , 2012 .

[34]  H. Pierson Handbook of carbon, graphite, diamond, and fullerenes , 1992 .