Computable completely decomposable groups

A completely decomposable group is an abelian group of the form ⊕ i Hi, where Hi ≤ (Q,+). We show that every computable completely decomposable group is Δ5-categorical. We construct a computable completely decomposable group which is not Δ4-categorical, and give an example of a computable completely decomposable group G which is Δ4-categorical but not Δ3-categorical. We also prove that the index set of computable completely decomposable groups is arithmetical.

[1]  M. Rabin Computable algebra, general theory and theory of computable fields. , 1960 .

[2]  Alexander G. Melnikov,et al.  Computable Ordered Abelian Groups and Fields , 2010, CiE.

[3]  A. I. Mal'tsev CONSTRUCTIVE ALGEBRAS I , 1961 .

[4]  Michiel Hazewinkel,et al.  Handbook of algebra , 1995 .

[5]  Grete Hermann,et al.  Die Frage der endlich vielen Schritte in der Theorie der Polynomideale , 1926 .

[6]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[7]  N. G. Khisamiev,et al.  Chapter 17 Constructive abelian groups , 1998 .

[8]  I. Karpova On a class of torsion-free abelian groups of finite rank , 1994 .

[9]  Richard Lawrence Smith,et al.  Two theorems on autostability in p-Groups , 1981 .

[10]  Marian Boykan Pour-El,et al.  Review: Robert I. Soare, Recursively enumerable sets and degrees: A study of computable functions and computably generated sets , 1988 .

[11]  Anil Nerode,et al.  The Introduction of Non-Recursive Methods into Mathematics* , 1982 .

[12]  D. S. Chistyakov Torsion-free Abelian groups of finite rank as endomorphic modules over their endomorphism ring , 2013 .

[13]  S. S. Goncharov,et al.  Autostability of models and Abelian groups , 1980 .

[14]  C. Ash,et al.  RECURSIVE LABELLING SYSTEMS AND STABILITY OF RECURSIVE STRUCTURES IN HYPERARITHMETICAL DEGREES , 2010 .

[15]  N. G. Khisamiev,et al.  Effectively totally decomposable abelian groups , 1997 .

[16]  R. Soare Recursively enumerable sets and degrees , 1987 .

[17]  Adolf Mader,et al.  Almost Completely Decomposable Groups , 2000 .

[18]  Jeffrey B. Remmel,et al.  Questions in computable algebra and combinatorics , 1999 .

[19]  B. H. Mayoh Review: M. O. Rabin, Computable Algebraic Systems; Michael O. Rabin, Computable Algebra, General Theory and Theory of Computable Fields , 1967 .

[20]  Rodney G. Downey,et al.  THE ISOMORPHISM PROBLEM FOR TORSION-FREE ABELIAN GROUPS IS ANALYTIC COMPLETE. , 2008 .

[21]  Rodney G. Downey,et al.  Decidability and Computability of Certain Torsion-Free Abelian Groups , 2010, Notre Dame J. Formal Log..

[22]  A. Kach Orders on Computable Torsion-Free Abelian Groups , 2011 .

[23]  Rodney G. Downey,et al.  Effectively categorical abelian groups , 2013 .

[24]  Charles F. D. McCoy Delta20 - categoricity in Boolean algebras and linear orderings , 2003, Ann. Pure Appl. Log..

[25]  R. Downey Chapter 14 Computability theory and linear orderings , 1998 .

[26]  A. Nerode,et al.  Effective content of field theory , 1979 .

[27]  Ewan J. Barker Back and Forth Relations for Reduced Abelian p-Groups , 1995, Ann. Pure Appl. Log..

[28]  Joaquín Pascual,et al.  Infinite Abelian Groups , 1970 .

[29]  David M. Arnold,et al.  Finite Rank Torsion Free Abelian Groups and Rings , 1982 .

[30]  Iskander Sh. Kalimullin,et al.  Limitwise monotonic sequences and degree spectra of structures , 2013 .

[31]  J. Shepherdson,et al.  Effective procedures in field theory , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[32]  Robert I. Soare,et al.  Logic Year 1979–80 , 1981 .

[33]  R. Göbel,et al.  Abelian Group Theory and Related Topics , 1994 .

[34]  Julia A. Knight,et al.  Computable structures and the hyperarithmetical hierarchy , 2000 .

[35]  Alexander G. Melnikov,et al.  Enumerations and Completely Decomposable Torsion-Free Abelian Groups , 2009, Theory of Computing Systems.

[36]  R. Baer,et al.  Abelian groups without elements of finite order , 1937 .

[37]  N. G. Khisamiev A Class of Strongly Decomposable Abelian Groups , 2002 .

[38]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[39]  F. Levi,et al.  Abelsche Gruppen mit abzählbaren Elementen , 1919 .

[40]  S. Goncharov Countable Boolean Algebras and Decidability , 1997 .

[41]  B. L. Waerden Eine Bemerkung über die Unzerlegbarkeit von Polynomen , 1930 .