First order expansion in the semiclassical limit of the Levy-Lieb functional

We prove the conjectured first order expansion of the Levy-Lieb functional in the semiclassical limit, arising from Density Functional Theory (DFT). This is accomplished by interpreting the problem as the singular perturbation of an Optimal Transport problem via a Dirichlet penalization.

[1]  Barry Simon,et al.  Semiclassical analysis of low lying eigenvalues, II. Tunneling* , 1984 .

[2]  Elliott H. Lieb,et al.  Statistical Mechanics of the Uniform Electron Gas , 2017, 1705.10676.

[3]  A lower bound for Coulomb energies , 1979 .

[4]  S. Serfaty,et al.  2D Coulomb Gases and the Renormalized Energy , 2012, 1201.3503.

[5]  Simone Di Marino,et al.  Continuity of Multimarginal Optimal Transport with Repulsive Cost , 2019, SIAM J. Math. Anal..

[6]  Lucas O Wagner,et al.  Exchange-correlation functionals from the strong interaction limit of DFT: applications to model chemical systems. , 2014, Physical chemistry chemical physics : PCCP.

[7]  P. Gori-Giorgi,et al.  Electronic Zero-Point Oscillations in the Strong-Interaction Limit of Density Functional Theory. , 2008, Journal of chemical theory and computation.

[8]  E. Lieb,et al.  Improved Lower Bound on the Indirect Coulomb Energy , 1981 .

[9]  L. Pascale,et al.  On Seidl-type maps for multi-marginal optimal transport with Coulomb cost , 2020 .

[10]  Codina Cotar,et al.  Next-order asymptotic expansion for N-marginal optimal transport with Coulomb and Riesz costs , 2017, Advances in Mathematics.

[11]  Paola Gori-Giorgi,et al.  Density-Functional Theory for Strongly Correlated Bosonic and Fermionic Ultracold Dipolar and Ionic Gases. , 2015, Physical review letters.

[12]  Luigi De Pascale,et al.  Optimal transport with Coulomb cost and the semiclassical limit of Density Functional Theory , 2017 .

[13]  Dissociating limit in Density Functional Theory with Coulomb optimal transport cost , 2018, 1811.12085.

[14]  G. Bouchitté,et al.  A New L∞ estimate in optimal mass transport , 2007 .

[15]  P. Gori-Giorgi,et al.  Simple Fully Nonlocal Density Functionals for Electronic Repulsion Energy , 2017, The journal of physical chemistry letters.

[16]  Codina Cotar,et al.  Equality of the Jellium and Uniform Electron Gas next-order asymptotic terms for Coulomb and Riesz potentials , 2017, 1707.07664.

[17]  S. Serfaty,et al.  NEXT ORDER ASYMPTOTICS AND RENORMALIZED ENERGY FOR RIESZ INTERACTIONS , 2014, Journal of the Institute of Mathematics of Jussieu.

[18]  Mathieu Lewin,et al.  Semi-classical limit of the Levy-Lieb functional in Density Functional Theory , 2017, 1706.02199.

[19]  Barry Simon,et al.  Semiclassical analysis of low lying eigenvalues. I. Non-degenerate minima : asymptotic expansions , 1983 .

[20]  Codina Cotar,et al.  Infinite-body optimal transport with Coulomb cost , 2013, Calculus of Variations and Partial Differential Equations.

[21]  Simone Di Marino,et al.  The strictly-correlated electron functional for spherically symmetric systems revisited , 2017, 1702.05022.

[22]  P. Gori-Giorgi,et al.  Strictly correlated electrons in density-functional theory: A general formulation with applications to spherical densities , 2007, cond-mat/0701025.

[23]  M. Seidl Strong-interaction limit of density-functional theory , 1999 .

[24]  Marginals with Finite Repulsive Cost , 2017, Canadian Journal of Mathematics.

[25]  Claudia Klüppelberg,et al.  Smoothing of Transport Plans with Fixed Marginals and Rigorous Semiclassical Limit of the Hohenberg–Kohn Functional , 2017, 1706.05676.

[26]  Thierry Champion,et al.  Continuity and Estimates for Multimarginal Optimal Transportation Problems with Singular Costs , 2016, 1608.08780.

[27]  Maria Colombo,et al.  Counterexamples in multimarginal optimal transport with Coulomb cost and spherically symmetric data , 2015, 1507.08522.

[28]  L. Pascale Optimal Transport with Coulomb cost. Approximation and duality , 2015, 1503.07063.

[29]  Simone Di Marino,et al.  Multimarginal Optimal Transport Maps for One–dimensional Repulsive Costs , 2015, Canadian Journal of Mathematics.

[30]  P. Loeb,et al.  A reduction technique for limit theorems in analysis and probability theory , 1992 .

[31]  G. Buttazzo,et al.  Optimal-transport formulation of electronic density-functional theory , 2012, 1205.4514.

[32]  Soumik Pal On the difference between entropic cost and the optimal transport cost , 2019, The Annals of Applied Probability.

[33]  E. Lieb,et al.  The local density approximation in density functional theory , 2019, Pure and Applied Analysis.

[34]  Elliott H. Lieb Density functionals for coulomb systems , 1983 .

[35]  Codina Cotar,et al.  Density Functional Theory and Optimal Transportation with Coulomb Cost , 2011, 1104.0603.

[36]  Augusto Gerolin,et al.  Duality theory for multi-marginal optimal transport with repulsive costs in metric spaces , 2018, ESAIM: Control, Optimisation and Calculus of Variations.

[37]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[38]  P. Gori-Giorgi,et al.  Density-functional theory for strongly interacting electrons. , 2009, Physical review letters.

[39]  Jean Louet,et al.  The Entropic Regularization of the Monge Problem on the Real Line , 2018, SIAM J. Math. Anal..