The formation of lead(II) chloride complexes to 300°C: A spectrophotometric study

Abstract The spectra of chlorolead(II) complexes in the ultraviolet region have been measured in acid chloride solutions from 0.0012 to 3.223 m and at temperatures from 25 to 300°C. The thermodynamic cumulative and stepwise formation constants as well as the spectra of the individual chlorolead(II) species have been calculated from the spectrophotometric data. At 25°C, the five species PbCl2−nn (0 ≤ n ≤ 4) occur, however, at 300°C the predominant species were PbCl+, PbCl02 and PbCl−3. Pb2+ occurs as a minor species in dilute solutions where total chloride is

[1]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures; I, Summary of the thermodynamic/electrostatic properties of the solvent , 1974 .

[2]  J. Bearden,et al.  Atomic energy levels , 1965 .

[3]  M. H. Lietzke,et al.  Electromotive Force Studies in Aqueous Solutions at Elevated Temperatures. VI. The Thermodynamic Properties of HCl-NaCl Mixtures1 , 1965 .

[4]  Arthur E. Martell,et al.  Stability constants of metal-ion complexes , 1964 .

[5]  J. E. Prue Ion pairs and complexes: Free energies, enthalpies, and entropies , 1969 .

[6]  W. C. D. Gruijter Luminescence of lead chloride and lead bromide single crystals: I. The excitation and emission spectra , 1973 .

[7]  Herrick L. Johnston,et al.  The Absorption Spectra of Methane, Carbon Dioxide, Water Vapor, and Ethylene in the Vacuum Ultraviolet , 1950 .

[8]  D. Stevenson On the Monomer Concentration in Liquid Water , 1965 .

[9]  W. T. Lindsay,et al.  Thermodynamics of sodium chloride solutions at high temperatures , 1972 .

[10]  Kenneth S. Pitzer,et al.  Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes , 1974 .

[11]  K. Pitzer,et al.  Thermodynamics of electrolytes. 8. High-temperature properties, including enthalpy and heat capacity, with application to sodium chloride , 1977 .

[12]  H. Helgeson,et al.  Thermodynamics of hydrothermal systems at elevated temperatures and pressures , 1969 .

[13]  F. Seitz Interpretation of the Properties of Alkali Halide‐Thallium Phosphors , 1938 .

[14]  L. Rogers,et al.  SPECTROPHOTOMETRIC DETERMINATION OF BISMUTH, LEAD, AND THALLIUM WITH HYDROCHLORIC ACID , 1953 .

[15]  W. L. Marshall,et al.  Ion Product of Water Substance, 0-1000 C, 1-10,000 Bars. New International Formulation and Its Background, , 1981 .

[16]  D. Leggett,et al.  General computer program for the computation of stability constants from absorbance data , 1975 .

[17]  W. Giggenbach,et al.  Hydrogen sulphide ionization and sulphur hydrolysis in high temperature solution , 1971 .

[18]  M. H. Lietzje,et al.  Electromotive force studies in aqueous solutions at elevated temperatures—XIII: the thermodynamic properties of HClNaClMgCl2 mixtures , 1971 .

[19]  M. Fox,et al.  Far ultraviolet solution spectroscopy of the iodide ion , 1977 .

[20]  M. H. Lietzke,et al.  ELECTROMOTIVE FORCE MEASUREMENTS IN AQUEOUS SOLUTIONS AT ELEVATED TEMPERATURES. II. THERMODYNAMIC PROPERTIES OF HYDROCHLORIC ACID1 , 1960 .

[21]  J. R. Peterson,et al.  Chloro Complexes of Lead(II) , 1965 .

[22]  R. Byrne,et al.  Lead chloride complexation using ultraviolet molar absorptivity characteristics , 1981 .

[23]  D. White,et al.  Sulfides associated with the Salton Sea geothermal brine , 1967 .

[24]  A. J. Read Ionization constants of benzoic acid from 25 to 250°C and to 2000 bar , 1981 .

[25]  R. M. Fuoss Ionic Association. III. The Equilibrium between Ion Pairs and Free Ions , 1958 .

[26]  S. Ahrland Thermodynamics of the stepwise formation of metal-ion complexes in aqueous solution , 1973 .

[27]  J. Nriagu,et al.  Stability of the lead (II) chloride complexes at elevated temperatures , 1971 .

[28]  T. Seward Metal complex formation in aqueous solutions at elevated temperatures and pressures , 1981 .

[29]  R. Cooney,et al.  Ultraviolet spectroscopic evidence for polynuclear lead (II) complexes in synthetic Red Sea brines , 1976 .

[30]  C. W. Davies,et al.  The extent of dissociation of salts in water. Part II. Uni-bivalent salts , 2022 .

[31]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures , 1974 .

[32]  J. Barrett,et al.  Ultra-Violet Absorption Spectra of the Molecules H2O, HDO and D2O , 1960, Nature.

[33]  T. Seward The stability of chloride complexes of Silver in hydrothermal solutions up to 350°C , 1976 .

[34]  R. Robinson,et al.  The Constitution of the Lead Halides in Aqueous Solution , 1955 .