On Counting Sperner Families
暂无分享,去创建一个
[1] E. Sperner. Ein Satz über Untermengen einer endlichen Menge , 1928 .
[2] D. Kleitman,et al. On Dedekind’s problem: The number of monotone Boolean functions , 1969 .
[3] Koichiro Yamamoto. Logarithmic order of free distributive lattice , 1954 .
[4] N. M. Riviere,et al. Recursive formulas on free distributive lattices , 1968 .
[5] P. Erdös,et al. INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .
[6] Daniel J. Kleitman,et al. On the average size of the sets in a Sperner family , 1973, Discret. Math..
[7] D. Lubell. A Short Proof of Sperner’s Lemma , 1966 .
[8] Paul Erdös,et al. Extremal problems among subsets of a set , 1974, Discret. Math..
[9] John B. Kelly,et al. Products of Zero-One Matrices , 1968, Canadian Journal of Mathematics.
[10] Koichi Yamamoto. Note on the Order of Free Distributive Lattices , 1953 .
[11] K. A. Baker,et al. A generalization of Sperner's lemma , 1969 .
[12] Anthony J. W. Hilton,et al. Existence Theorems for Sperner Families , 1974, J. Comb. Theory, Ser. A.
[13] Randolph Church,et al. Nunmerical analysis of certain free distributive structures , 1940 .