Tradeoff Between Antenna Efficiency and Q-Factor

The tradeoff between radiation efficiency and antenna bandwidth, expressed in terms of Q-factor for small antennas, is formulated as a multiobjective optimization problem in current distributions of predefined support. Variants on the problem are constructed to demonstrate the consequences of requiring a self-resonant current as opposed to the one tuned by an external reactance. The tradeoffs are evaluated for sample problems and the resulting Pareto-optimal sets reveal the relative cost of valuing low radiation Q-factor over high efficiency, the cost in efficiency to require a self-resonant current, the effects of lossy parasitic loading, and other insights. Observations are drawn from the sample problems selected, though the tradeoff evaluation method is valid for studying arbitrary antenna geometries. In the examples considered here, we observe that small increases in Q-factor away from its lower bound allow for dramatic increases in efficiency toward its upper bound.

[1]  Miloslav Capek,et al.  Evaluating radiation efficiency from characteristic currents , 2015 .

[2]  Chi-Chih Chen,et al.  Small Antennas:Miniaturization Techniques & Applications , 2009 .

[3]  Mats Gustafsson,et al.  Antenna Current Optimization using MATLAB and CVX , 2016 .

[4]  B. L. G. Jonsson,et al.  Physical Bounds and Optimal Currents on Antennas , 2012, IEEE Transactions on Antennas and Propagation.

[5]  Mats Gustafsson,et al.  Accurate and Efficient Evaluation of Characteristic Modes , 2018, IEEE Transactions on Antennas and Propagation.

[6]  Mats Gustafsson,et al.  Dissipation Factors of Spherical Current Modes on Multiple Spherical Layers , 2018, IEEE Transactions on Antennas and Propagation.

[7]  R. Collin,et al.  Evaluation of antenna Q , 1964 .

[8]  Hiroshi Shirai,et al.  Theoretical Limit of the Radiation Efficiency for Electrically Small Self-Resonant Spherical Surface Antennas , 2017, IEICE Trans. Electron..

[9]  Lukas Jelinek,et al.  Optimal Currents on Arbitrarily Shaped Surfaces , 2016, IEEE Transactions on Antennas and Propagation.

[10]  Mats Gustafsson,et al.  Antenna Q and Stored Energy Expressed in the Fields, Currents, and Input Impedance , 2015, IEEE Transactions on Antennas and Propagation.

[11]  Mats Gustafsson,et al.  Physical bounds of antennas , 2015 .

[12]  J. T. Bernhard,et al.  A Group Theory Rule for Predicting Eigenvalue Crossings in Characteristic Mode Analyses , 2017, IEEE Antennas and Wireless Propagation Letters.

[13]  A. Yaghjian,et al.  Lower Bounds on the Q of Electrically Small Dipole Antennas , 2010, IEEE Transactions on Antennas and Propagation.

[14]  J. Volakis,et al.  Approximate boundary conditions in electromagnetics , 1995 .

[15]  Mats Gustafsson,et al.  Stored energies in electric and magnetic current densities for small antennas , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  Hiroshi Shirai,et al.  Theoretical Limitation of the Radiation Efficiency for Homogenous Electrically Small Antennas , 2015, IEICE Trans. Electron..

[17]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[18]  C. Delaveaud,et al.  Radiation efficiency optimization of electrically small antennas: Application to 3D folded dipole , 2016, 2016 International Workshop on Antenna Technology (iWAT).

[19]  David V. Thiel,et al.  Fundamental Limitations for Antenna Radiation Efficiency , 2016, IEEE Transactions on Antennas and Propagation.

[20]  A.D. Yaghjian,et al.  Impedance, bandwidth, and Q of antennas , 2003, IEEE Transactions on Antennas and Propagation.

[21]  W. Marsden I and J , 2012 .

[22]  M. Uzsoky,et al.  Theory of super-directive linear arrays , 1956 .

[23]  Lukas Jelinek,et al.  On the Functional Relation Between Quality Factor and Fractional Bandwidth , 2014, IEEE Transactions on Antennas and Propagation.

[24]  S. A Re-Examination of the Fundamental Limits on the Radiation Q of Electrically Small Antennas , 2008 .

[25]  Carl Pfeiffer,et al.  Fundamental Efficiency Limits for Small Metallic Antennas , 2016, IEEE Transactions on Antennas and Propagation.

[26]  P. Lancaster On eigenvalues of matrices dependent on a parameter , 1964 .

[27]  Roger F. Harrington,et al.  Antenna excitation for maximum gain , 1965 .

[28]  S. Best,et al.  Electrically Small Resonant Planar Antennas: Optimizing the quality factor and bandwidth. , 2015, IEEE Antennas and Propagation Magazine.

[29]  David V. Thiel,et al.  An Investigation Into the Gustafsson Limit for Small Planar Antennas Using Optimization , 2013, IEEE Transactions on Antennas and Propagation.

[30]  Roger F. Harrington,et al.  Control of radar scattering by reactive loading , 1972 .

[31]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[32]  Safieddin Safavi-Naeini,et al.  Maximum Gain of a Lossy Antenna , 2012, IEEE Transactions on Antennas and Propagation.

[33]  Guy A E Vandenbosch Simple Procedure to Derive Lower Bounds for Radiation $Q$ of Electrically Small Devices of Arbitrary Topology , 2011, IEEE Transactions on Antennas and Propagation.

[34]  H. Thal New Radiation$Q$Limits for Spherical Wire Antennas , 2006, IEEE Transactions on Antennas and Propagation.

[35]  Mats Gustafsson Efficiency and Q for small antennas using Pareto optimality , 2013, 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[36]  Gao Wei,et al.  Characteristic Modes Evaluation for Metallic Small Antennas With Unidirectional Pattern , 2017, IEEE Antennas and Wireless Propagation Letters.

[37]  David V. Thiel,et al.  Physical bounds for antenna radiation efficiency , 2016 .

[38]  Mats Gustafsson,et al.  Antenna Bandwidth Optimization With Single Frequency Simulation , 2014, IEEE Transactions on Antennas and Propagation.

[39]  Lukas Jelinek,et al.  Comments on "Fundamental Efficiency Limits for Small Metallic Antennas" , 2017 .

[40]  Caner Özdemii̇r Wiley Series in Microwave and Optical Engineering , 2012 .

[41]  H.A. Wheeler,et al.  Fundamental Limitations of Small Antennas , 1947, Proceedings of the IRE.

[42]  H. Thal,et al.  Radiation Efficiency Limits for Elementary Antenna Shapes , 2018, IEEE Transactions on Antennas and Propagation.

[43]  Lukas Jelinek,et al.  Radiation Efficiency Cost of Resonance Tuning , 2018, IEEE Transactions on Antennas and Propagation.

[44]  G. Vandenbosch,et al.  Reactive Energies, Impedance, and ${\rm Q}$ Factor of Radiating Structures , 2010, IEEE Transactions on Antennas and Propagation.

[45]  S. Nordebo,et al.  Optimal Antenna Currents for Q, Superdirectivity, and Radiation Patterns Using Convex Optimization , 2013, IEEE Transactions on Antennas and Propagation.

[46]  D. Kajfez,et al.  Invariant Definitions of the Unloaded Q Factor (Short Paper) , 1986 .

[47]  R. Collin,et al.  A New Chu Formula for Q , 2009, IEEE Antennas and Propagation Magazine.

[48]  Mats Gustafsson,et al.  Minimum Q for Lossy and Lossless Electrically Small Dipole Antennas , 2013 .

[49]  L. J. Chu Physical Limitations of Omni‐Directional Antennas , 1948 .

[50]  Lukas Jelinek,et al.  Optimal Composition of Modal Currents for Minimal Quality Factor $Q$ , 2016, IEEE Transactions on Antennas and Propagation.

[51]  Roger F. Harrington,et al.  Field computation by moment methods , 1968 .

[52]  Mats Gustafsson,et al.  Bandwidth, Q factor, and resonance models of antennas , 2005 .

[53]  Roger F. Harrington,et al.  Effect of antenna size on gain, bandwidth, and efficiency , 1960 .

[54]  J. Volakis,et al.  Multiobjective Optimal Antenna Design Based on Volumetric Material Optimization , 2007, IEEE Transactions on Antennas and Propagation.

[55]  G. Arfken Mathematical Methods for Physicists , 1967 .

[56]  G. Arfken,et al.  Mathematical methods for physicists 6th ed. , 1996 .

[57]  H. Thal,et al.  Q Bounds for Arbitrary Small Antennas: A Circuit Approach , 2012, IEEE Transactions on Antennas and Propagation.

[58]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[59]  Gao Wei,et al.  Increasing Radiation Efficiency Using Antenna Shape Optimization Approach , 2018, IEEE Antennas and Wireless Propagation Letters.

[60]  Peng Jin,et al.  Low-Q, Electrically Small, Efficient Near-Field Resonant Parasitic Antennas , 2009, IEEE Transactions on Antennas and Propagation.

[61]  M. Gustafsson,et al.  Physical limitations on antennas of arbitrary shape , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[62]  Best,et al.  The lower bounds on Q for lossy electric and magnetic dipole antennas , 2004, IEEE Antennas and Wireless Propagation Letters.

[63]  A. K. Skrivervik,et al.  Design, Realization and Measurements of a Miniature Antenna for Implantable Wireless Communication Systems , 2011, IEEE Transactions on Antennas and Propagation.

[64]  Mats Gustafsson,et al.  Minimization of Antenna Quality Factor , 2017, IEEE Transactions on Antennas and Propagation.

[65]  Jr. H. Thal Exact circuit analysis of spherical waves , 1978 .

[66]  Anders Karlsson,et al.  On the efficiency and gain of antennas , 2006 .

[67]  Jan Carlsson,et al.  Circuit based optimization of radiation characteristics of single and multi-port antennas , 2009, 2009 3rd European Conference on Antennas and Propagation.

[68]  Glenn S. Smith Efficiency of electrically small antennas combined with matching networks , 1977 .

[69]  Guy A. E. Vandenbosch,et al.  Energy Stored by Radiating Systems , 2017, IEEE Access.

[70]  R. Hansen,et al.  Fundamental limitations in antennas , 1981, Proceedings of the IEEE.

[71]  Hao Ling,et al.  Design of electrically small wire antennas using a pareto genetic algorithm , 2005, IEEE Transactions on Antennas and Propagation.