Oxidation behavior of a pressureless sintered ZrB_2–MoSi_2 ceramic composite

Ultra-refractory ceramic composites of composition ZrB 2 + (5 to 20) vol% MoSi 2 were produced by pressureless sintering at 1830 °C under argon atmosphere.Sintering cycles and microstructural analysis point out that at least 20 vol% molybdenum disilicide is necessary for obtaining a dense material. Thereafter, the composite 80 vol% ZrB 2 + 20 vol% MoSi 2 was used to test the thermal stabilityunder oxidizing environment. Oxidation tests were carried out in flowing syntheticair in a thermogravimetric analyzer from 700 to 1400 °C with exposure time of30 h. In the low-temperature range (700–1000 °C), the oxidation of the composite resembles that of monolithic ZrB 2 ceramics, for temperatures >1200 °C the silica resulting from oxidation of molybdenum disilicide seals the sample surface, preventing zirconium diboride from fast degradation.

[1]  T. Mah,et al.  In Situ Processing and Properties of SiC/MoSi2 Nanocomposites , 2005 .

[2]  D. Butt,et al.  Kinetics and Products of Molybdenum Disilicide Powder Oxidation , 2004 .

[3]  J. Zaykoski,et al.  Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: Theoretical considerations and historical experience , 2004 .

[4]  Alida Bellosi,et al.  Oxidation of ZrB2-Based Ceramics in Dry Air , 2003 .

[5]  D. Sciti,et al.  High‐Temperature Resistant Composites in the AlN–SiC–MoSi2 System , 2003 .

[6]  A. Bellosi,et al.  Beneficial Effects of AlN as Sintering Aid on Microstructure and Mechanical Properties of Hot‐pressed ZrB2 , 2003 .

[7]  Tetsuya Suzuki,et al.  Oxidation resistance of boronized MoSi2 , 2003 .

[8]  A. Bellosi,et al.  Advances in microstructure and mechanical properties of zirconium diboride based ceramics , 2003 .

[9]  J. Yang,et al.  Thermal stability of refractory carbide/boride composites , 2002 .

[10]  Alida Bellosi,et al.  Processing and properties of zirconium diboride-based composites , 2002 .

[11]  G. Thomas,et al.  Zircon formation from amorphous silica and tetragonal zirconia: kinetic study and modelling , 2001 .

[12]  Guo‐Jun Zhang,et al.  Reactive Hot Pressing of ZrB2–SiC Composites , 2004 .

[13]  S. Deevi,et al.  Oxidation Behavior of Molybdenum Silicides and Their Composites , 2000 .

[14]  Mark M. Opeka,et al.  Mechanical, Thermal, and Oxidation Properties of Refractory Hafnium and zirconium Compounds , 1999 .

[15]  Hideaki Takahashi,et al.  Low temperature oxidation of fully dense and porous MoSi2 , 1999 .

[16]  K. Nagata,et al.  Effect of third elements on the pesting suppression of Mo-Si-X intermetallics (X = Al, Ta, Ti, Zr and Y) , 1996 .

[17]  E. Lavernia,et al.  Processing of molybdenum disilicide , 1994, Journal of Materials Science.

[18]  E. Lavernia Review Processing of molybdenum disilicide , 1994 .

[19]  T. Nieh,et al.  Mechanism of MoSi_2 pest during low temperature oxidation , 1993 .

[20]  P. Tortorelli,et al.  A study of pest oxidation in polycrystalline MoSi_2 , 1992 .

[21]  A. Tsuge,et al.  Effects of Metallic Boride Dispersion on Fracture Toughness and Oxidation Resistance in SiC Ceramics , 1992 .

[22]  P. J. Meschter Low-temperature oxidation of molybdenum disilicide , 1992 .

[23]  H. C. Graham,et al.  Thermogravi metric Study of the Oxidation of ZrB2 in the Temperature Range of 800° to 1500°C , 1971 .

[24]  J. Berkowitz‐Mattuck High‐Temperature Oxidation III . Zirconium and Hafnium Diborides , 1966 .

[25]  P. Shaffer AN OXIDATION RESISTANT BORIDE COMPOSITION , 1962 .