Review of robotic control strategies for industrial finishing operations

Good quality of surface finishing requires accurate control of tool positioning, as well as of contact forces. Various position and force control strategies have been applied to robotized finishing processes in industries. This paper reviews the control strategies applicable to robotic finishing operations, highlighting the benefits and limitations. Finally, adaptive force/impedance control architecture and its potential implementation on new generation compliant robots are briefed.

[1]  F. Xi,et al.  Modeling surface roughness in the stone polishing process , 2005 .

[2]  Shiuh-Jer Huang,et al.  Hai Hsiang Robotic End-Effector Impedance Control without Expensive Torque / Force Sensor , 2013 .

[3]  Joris De Schutter,et al.  Polyhedral contact formation modeling and identification for autonomous compliant motion , 2003, IEEE Trans. Robotics Autom..

[4]  Ruifeng Li,et al.  Implementation and Test of Human-Operated and Human-Like Adaptive Impedance Controls on Baxter Robot , 2014, TAROS.

[5]  B. Hazel,et al.  Robotic polishing of turbine runners , 2012, 2012 2nd International Conference on Applied Robotics for the Power Industry (CARPI).

[6]  Wen-Hong Zhu,et al.  Force control: A bird's eye view , 1998 .

[7]  D. M. Gorinevskiĭ,et al.  Force control of robotics systems , 1997 .

[8]  Tore Hägglund,et al.  Advances in Pid Control , 1999 .

[9]  Abderrahmane Kheddar,et al.  Motion learning and adaptive impedance for robot control during physical interaction with humans , 2011, 2011 IEEE International Conference on Robotics and Automation.

[10]  A. Isidori,et al.  Nonlinear feedback in robot arm control , 1984, The 23rd IEEE Conference on Decision and Control.

[11]  Yonghua Chen,et al.  Robot machining: recent development and future research issues , 2013 .

[12]  Bruno Siciliano,et al.  Robot Force Control , 2000 .

[13]  Bin Wu,et al.  A shape adaptive motion control system with application to robotic polishing , 2005 .

[14]  António M. Lopes,et al.  A force-impedance controlled industrial robot using an active robotic auxiliary device , 2008 .

[15]  Shuzhi Sam Ge,et al.  An Adaptive Impedance Control Scheme for Constrained Robots , 2004, Int. J. Comput. Syst. Signals.

[16]  Christian Ott,et al.  Cartesian Impedance Control of Redundant and Flexible-Joint Robots , 2008, Springer Tracts in Advanced Robotics.

[17]  Liang Liao,et al.  Adaptive Control of Pressure Tracking for Polishing Process , 2010 .

[18]  Imin Kao,et al.  Geometrical approach to the conservative congruence transformation (CCT) for robotic stiffness control , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[19]  Joris De Schutter,et al.  Estimating First-Order Geometric Parameters and Monitoring Contact Transitions during Force-Controlled Compliant Motion , 1999, Int. J. Robotics Res..

[20]  Alin Albu-Schäffer,et al.  Soft robotics: what Cartesian stiffness can obtain with passively compliant, uncoupled joints? , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[21]  B. R. Markiewicz,et al.  Analysis of the computed torque drive method and comparison with conventional position servo for a computer-controlled manipulator , 1973 .

[22]  Romeo Ortega,et al.  On adaptive impedance control of robot manipulators , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[23]  R. Ortega,et al.  The matching conditions of controlled Lagrangians and IDA-passivity based control , 2002 .

[24]  Christian Ott,et al.  Passivity Based Cartesian Impedance Control for Flexible Joint Manipulators , 2004 .

[25]  Anders Robertsson,et al.  Robotic force control using observer-based strict positive real impedance control , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[26]  Jan F. Broenink,et al.  A spatial impedance controller for robotic manipulation , 1997, IEEE Trans. Robotics Autom..

[27]  Christian Ott,et al.  Unified Impedance and Admittance Control , 2010, 2010 IEEE International Conference on Robotics and Automation.

[28]  Li Zhang,et al.  Material Removal Model and Contact Control of Robotic Gasbag Polishing Technique , 2008, 2008 IEEE Conference on Robotics, Automation and Mechatronics.

[29]  Costas S. Tzafestas,et al.  Telehaptic Perception of Delayed Stiffness Using Adaptive Impedance Control: Experimental Psychophysical Analysis , 2013, PRESENCE: Teleoperators and Virtual Environments.

[30]  Cezary Zielinski,et al.  A prototype robot for polishing and milling large objects , 2003, Ind. Robot.

[31]  Antonio Bicchi,et al.  Compliant design for intrinsic safety: general issues and preliminary design , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[32]  Juan J. Marquez,et al.  Process modeling for robotic polishing , 2005 .

[33]  Marcelo H. Ang,et al.  General framework of the force and compliant motion control for macro mini manipulator , 2013, 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[34]  Etienne Burdet,et al.  Experimental evaluation of nonlinear adaptive controllers , 1998 .

[35]  Alin Albu-Schäffer,et al.  On the Passivity-Based Impedance Control of Flexible Joint Robots , 2008, IEEE Transactions on Robotics.

[36]  Jianjun Wang,et al.  High-precision assembly automation based on robot compliance , 2009 .

[37]  Fusaomi Nagata,et al.  Robotic sanding system for new designed furniture with free-formed surface , 2007 .

[38]  Antonio Bicchi,et al.  Variable Stiffness Actuators for Fast and Safe Motion Control , 2003, ISRR.

[39]  Carlos Canudas de Wit,et al.  An exponentially stable adaptive control for force and position tracking of robot manipulators , 1999, IEEE Trans. Autom. Control..

[40]  Yoshimi Takeuchi,et al.  Automated polishing process with a human-like dexterous robot , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[41]  Stefano Stramigioli,et al.  Impedance control as merging mechanism for a behaviour-based architecture , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[42]  Zhao-Hui Jiang Impedance Control of Flexible Robot Arms with Parametric Uncertainties , 2005, J. Intell. Robotic Syst..

[43]  Dimitry Gorinevsky,et al.  Force Control of Robotics Systems , 1998 .