Prediction and simulation errors in parameter estimation for nonlinear systems
暂无分享,去创建一个
[1] P. Young. The use of linear regression and related procedures for the identification of dynamic processes , 1968 .
[2] John J. Grefenstette,et al. Genetic algorithms and their applications , 1987 .
[3] J. P. Norton,et al. An Introduction to Identification , 1986 .
[4] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[5] Petre Stoica,et al. On the uniqueness of prediction error models for systems with noisy input-output data , 1987, Autom..
[6] James E. Baker,et al. Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.
[7] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[8] Petre Stoica,et al. Decentralized Control , 2018, The Control Systems Handbook.
[9] Sheng Chen,et al. Orthogonal least squares methods and their application to non-linear system identification , 1989 .
[10] Sheng Chen,et al. Identification of non-linear rational systems using a prediction-error estimation algorithm , 1989 .
[11] D. E. Goldberg,et al. Genetic Algorithms in Search , 1989 .
[12] Kumpati S. Narendra,et al. Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.
[13] S. Billings,et al. Rational model identification using an extended least-squares algorithm , 1991 .
[14] S. Billings,et al. Recursive Parameter Estimation for Nonlinear Rational Models , 1991 .
[15] L. A. Aguirre,et al. Validating Identified Nonlinear Models with Chaotic Dynamics , 1994 .
[16] Peter J. Fleming,et al. An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.
[17] S. A. Billings,et al. Rational model data smoothers and identification algorithms , 1997 .
[18] S. Billings,et al. On Overparametrization of Nonlinear Discrete Systems , 1997 .
[19] Ricardo H. C. Takahashi,et al. Improving generalization of MLPs with multi-objective optimization , 2000, Neurocomputing.
[20] Kalyanmoy Deb,et al. A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.
[21] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[22] Michel Gevers,et al. Modelling, Identification and Control , 2002 .
[23] Ricardo H. C. Takahashi,et al. A multiobjective methodology for evaluating genetic operators , 2003 .
[24] L. Piroddi,et al. An identification algorithm for polynomial NARX models based on simulation error minimization , 2003 .
[25] Demosthenis D. Rizos,et al. Identification of pre-sliding friction dynamics. , 2004, Chaos.
[26] Jürgen Kurths,et al. Nonlinear Dynamical System Identification from Uncertain and Indirect Measurements , 2004, Int. J. Bifurc. Chaos.
[27] Peter J. Fleming,et al. Evolution of mathematical models of chaotic systems based on multiobjective genetic programming , 2005, Knowledge and Information Systems.
[28] Ferenc Szeifert,et al. Genetic programming for the identification of nonlinear input-output models , 2005 .
[29] Quanmin Zhu. An implicit least squares algorithm for nonlinear rational model parameter estimation , 2005 .
[30] Carlo Novara,et al. Model quality in identification of nonlinear systems , 2005, IEEE Transactions on Automatic Control.
[31] Leonardo A. B. Tôrres,et al. Evaluation of dynamical models: dissipative synchronization and other techniques. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[32] Wei-Der Chang,et al. An improved real-coded genetic algorithm for parameters estimation of nonlinear systems , 2006 .
[33] George W. Irwin,et al. Prediction- and simulation-error based perceptron training: Solution space analysis and a novel combined training scheme , 2007, Neurocomputing.
[34] Leonardo A. B. Tôrres. Discrete-time dynamic systems synchronization: Information transmission and model matching , 2007 .
[35] Keith Worden,et al. Genetic algorithm with an improved fitness function for (N)ARX modelling , 2007 .
[36] Ricardo H. C. Takahashi,et al. Multiobjective parameter estimation for non-linear systems: affine information and least-squares formulation , 2007, Int. J. Control.
[37] Ricardo H. C. Takahashi,et al. Multi-objective parameter estimation via minimal correlation criterion , 2007 .
[38] Quan Min Zhu,et al. Development of omni-directional correlation functions for nonlinear model validation , 2007, Autom..
[39] Quanmin Zhu,et al. An enhanced back propagation algorithm for parameter estimation of rational models , 2008, Int. J. Model. Identif. Control..
[40] Luigi Piroddi,et al. Simulation error minimisation methods for NARX model identification , 2008, Int. J. Model. Identif. Control..
[41] Xavier Blasco Ferragud,et al. Non-linear robust identification using evolutionary algorithms: Application to a biomedical process , 2008, Eng. Appl. Artif. Intell..
[42] Stephen A. Billings,et al. Model structure selection using an integrated forward orthogonal search algorithm assisted by squared correlation and mutual information , 2008, Int. J. Model. Identif. Control..
[43] Antônio de Pádua Braga,et al. A multi-objective approach to RBF network learning , 2008, Neurocomputing.
[44] Marcello Farina,et al. Some convergence properties of multi-step prediction error identification criteria , 2008, 2008 47th IEEE Conference on Decision and Control.
[45] Sheng Chen,et al. Model selection approaches for non-linear system identification: a review , 2008, Int. J. Syst. Sci..
[46] Stephen A. Billings,et al. Improved parameter estimates for non-linear dynamical models using a bootstrap method , 2009, Int. J. Control.
[47] L. Coelho,et al. Nonlinear model identification of an experimental ball-and-tube system using a genetic programming approach , 2009 .
[48] T. K. Radhakrishnan,et al. Real-coded genetic algorithm for system identification and controller tuning , 2009 .
[49] Stephen A. Billings,et al. Model Estimation of Cerebral Hemodynamics Between Blood Flow and Volume Changes: A Data-Based Modeling Approach , 2009, IEEE Transactions on Biomedical Engineering.
[50] Barnabás Póczos,et al. Identification of Recurrent Neural Networks by Bayesian Interrogation Techniques , 2009, J. Mach. Learn. Res..