CdZnTe and CdTe materials for X‐ray and gamma ray radiation detector applications

Good detection efficiency and high energy-resolution make Cadmium Zinc Telluride (CdZnTe) and Cadmium Telluride (CdTe) detectors attractive in many room temperature X-ray and gamma-ray detection applications such as medical and industrial imaging, industrial gauging and non-destructive testing, security and monitoring, nuclear safeguards and non-proliferation, and astrophysics. Advancement of the crystal growth and device fabrication technologies and the reduction of bulk, interface and surface defects in the devices are crucial for the widespread practical deployment of Cd 1-x Zn x Te-based detector technology. Here we review the effects of bulk, interface and surface defects on charge transport, charge transport uniformity and device performance and the progress in the crystal growth and device fabrication technologies aiming at reducing the concentration of harmful defects and improving Cd 1-x Zn x Te detector performance.

[1]  K. Zanio,et al.  Semiconductors and Semimetals Volume 13 Cadmium Telluride , 1978 .

[2]  Beatrice Fraboni,et al.  Deep energy levels in CdTe and CdZnTe , 1998 .

[3]  Kazuyuki Satoh,et al.  Growth and characterization of CdTe single crystals for radiation detectors , 1999 .

[4]  Paul Siffert,et al.  Undoped high‐resistivity cadmium telluride for nuclear radiation detectors , 1974 .

[5]  Meyer,et al.  Optical investigations of defects in Cd1-xZnxTe. , 1995, Physical review. B, Condensed matter.

[6]  P. M. Fochuk,et al.  IV group dopant compensation effect in CdTe , 1999 .

[7]  D. Gaspar,et al.  Interfacial chemistry and the performance of bromine-etched CdZnTe radiation detector devices , 2001 .

[8]  J. Greenberg Vapor pressure scanning implications of CdTe crystal growth , 1999 .

[9]  David Z. Ting,et al.  Effects of p/n inhomogeneity on CdZnTe radiation detectors , 2003, SPIE Optics + Photonics.

[10]  K. Benz,et al.  Defect structure of Sn-doped CdTe , 2003 .

[11]  Meyer,et al.  Identification of the cadmium vacancy in CdTe by electron paramagnetic resonance. , 1993, Physical review. B, Condensed matter.

[12]  H. B. Barber,et al.  Charge transport in arrays of semiconductor gamma-ray detectors. , 1995, Physical review letters.

[13]  G. Neumark,et al.  Defects in wide band gap II-VI crystals , 1997 .

[14]  Arnold Burger,et al.  Development of large single crystal (3-inch ingot) CdZnTe for large-volume nuclear radiation detectors , 2003, SPIE Optics + Photonics.

[15]  P. Luke Single-polarity charge sensing in ionization detectors using coplanar electrodes , 1994 .

[16]  G. Neumark,et al.  Effect of deep levels on semiconductor carrier concentrations in the case of , 1982 .

[17]  K. Benz,et al.  High temperature defect structure of Cd- and Te-rich CdTe , 2001 .

[18]  A. Holmes-Siedle,et al.  The BaBar RadFET monitoring board , 2001 .

[19]  Israel Mardor,et al.  Optimum spectroscopic performance from CZT γ- and X-ray detectors with pad and strip segmentation , 1999 .

[20]  K. Zanio,et al.  Semiconductors and Semimetals, Vol. 13 (Cadmium Telluride) , 1978 .

[21]  Su-Huai Wei,et al.  Chemical trends of defect formation and doping limit in II-VI semiconductors: The case of CdTe , 2002 .

[22]  P. Luke,et al.  Electron trapping nonuniformity in high-pressure-Bridgman-grown CdZnTe , 2002 .

[23]  K. Chattopadhyay,et al.  Large volume imaging arrays for gamma-ray spectroscopy , 1999 .

[24]  G. Knoll Radiation detection and measurement , 1979 .