4-(N,N-dimethylamino)pyridine-embedded nanoporous conjugated polymer as a highly active heterogeneous organocatalyst.

We report herein for the first time the incorporation of a versatile organocatalyst, 4-(N,N-dimethylamino)pyridine (DMAP), into the network of a nanoporous conjugated polymer (NCP) by the "bottom-up" approach. The resulting DMAP-NCP material possesses highly concentrated and homogeneously distributed DMAP catalytic sites (2.02 mmol  g(-1)). DMAP-NCP also exhibits enhanced stability and permanent porosity due to the strong covalent linkage and the rigidity of the "bottom-up" monomers. As a result, DMAP-NCP shows excellent catalytic activity in the acylation of alcohols with yields of 92-99 %. The DMAP-NCP catalyst could be easily recovered from the reaction mixture and reused in at least 14 consecutive cycles without measurable loss of activity. Moreover, the catalytic acylation reaction could be performed under neat and continuous-flow conditions for at least 536 h of continuous work with the same catalyst activity.

[1]  A. Cooper,et al.  Band gap engineering in fluorescent conjugated microporous polymers , 2011 .

[2]  Zhigang Xie,et al.  Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. , 2011, Journal of the American Chemical Society.

[3]  Bao-hang Han,et al.  Porous Organic Polymers Based on Propeller-Like Hexaphenylbenzene Building Units , 2011 .

[4]  SonBinh T. Nguyen,et al.  Porous organic polymers in catalysis: Opportunities and challenges , 2011 .

[5]  Wenbin Lin,et al.  Highly Porous Cross-Linked Polymers for Catalytic Asymmetric Diethylzinc Addition to Aldehydes , 2011 .

[6]  F. Glorius,et al.  N-Heterocyclic carbene containing element organic frameworks as heterogeneous organocatalysts. , 2011, Chemical communications.

[7]  Geoffrey I N Waterhouse,et al.  A general thermolabile protecting group strategy for organocatalytic metal-organic frameworks. , 2011, Journal of the American Chemical Society.

[8]  C. Bielawski,et al.  A recyclable, self-supported organocatalyst based on a poly(N-heterocyclic carbene). , 2011, Journal of the American Chemical Society.

[9]  Abraham M. Shultz,et al.  Synthesis of catalytically active porous organic polymers from metalloporphyrin building blocks , 2011 .

[10]  F. Glorius,et al.  A family of chiral metal-organic frameworks. , 2011, Chemistry.

[11]  Chao Wang,et al.  Metal-organic conjugated microporous polymers. , 2011, Angewandte Chemie.

[12]  Zhigang Xie,et al.  Highly stable and porous cross-linked polymers for efficient photocatalysis. , 2011, Journal of the American Chemical Society.

[13]  H. Kim,et al.  Tubular microporous organic networks bearing imidazolium salts and their catalytic CO2 conversion to cyclic carbonates. , 2011, Chemical communications.

[14]  A. Villa,et al.  Triazine-based polymers as nanostructured supports for the liquid-phase oxidation of alcohols. , 2011, Chemistry.

[15]  Arne Thomas Funktionsmaterialien: von harten zu weichen porösen Netzwerken , 2010 .

[16]  Arne Thomas Functional materials: from hard to soft porous frameworks. , 2010, Angewandte Chemie.

[17]  Cheng Wang,et al.  Isoreticular chiral metal-organic frameworks for asymmetric alkene epoxidation: tuning catalytic activity by controlling framework catenation and varying open channel sizes. , 2010, Journal of the American Chemical Society.

[18]  Wenbin Lin,et al.  A series of isoreticular chiral metal-organic frameworks as a tunable platform for asymmetric catalysis. , 2010, Nature chemistry.

[19]  A. C. Evans,et al.  Organocatalytic Tunable Amino Acid Polymers Prepared by Controlled Radical Polymerization , 2010 .

[20]  B. Dorney,et al.  Microporous polyphenylenes with tunable pore size for hydrogen storage. , 2010, Chemical communications.

[21]  D. Jiang,et al.  CMPs as scaffolds for constructing porous catalytic frameworks: a built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. , 2010, Journal of the American Chemical Society.

[22]  T. Kristensen,et al.  Polymer-Supported Chiral Organocatalysts: Synthetic Strategies for the Road Towards Affordable Polymeric Immobilization , 2010 .

[23]  Neil B. McKeown,et al.  Exploitation of Intrinsic Microporosity in Polymer-Based Materials , 2010 .

[24]  S. Polarz,et al.  Effects of primary and secondary surface groups in enantioselective catalysis using nanoporous materials with chiral walls. , 2010, Journal of the American Chemical Society.

[25]  D. Jiang,et al.  Light-harvesting conjugated microporous polymers: rapid and highly efficient flow of light energy with a porous polyphenylene framework as antenna. , 2010, Journal of the American Chemical Society.

[26]  Andrew I. Cooper,et al.  Poröse organische Polymere: Muss Ordnung doch nicht sein?† , 2010 .

[27]  A. Cooper,et al.  Porous organic polymers: distinction from disorder? , 2010, Angewandte Chemie.

[28]  Irena Pulko,et al.  Ultra-high surface area functional porous polymers by emulsion templating and hypercrosslinking: efficient nucleophilic catalyst supports. , 2010, Chemistry.

[29]  J. Legros,et al.  Fluorous 4-N,N-dimethylaminopyridine (DMAP) salts as simple recyclable acylation catalysts. , 2010, Chemistry.

[30]  F. K. Hansen,et al.  A general approach for preparation of polymer-supported chiral organocatalysts via acrylic copolymerization. , 2010, The Journal of organic chemistry.

[31]  R. Clowes,et al.  Palladium Nanoparticle Incorporation in Conjugated Microporous Polymers by Supercritical Fluid Processing , 2010 .

[32]  X. Yao,et al.  Tröger's base-functionalised organic nanoporous polymer for heterogeneous catalysis. , 2010, Chemical communications.

[33]  A. Villa,et al.  Covalent triazine framework as catalytic support for liquid phase reaction. , 2010, Nano letters.

[34]  A. Cooper,et al.  Microporous organic polymers: design, synthesis, and function. , 2010, Topics in current chemistry.

[35]  Wenchuan Wang,et al.  Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. , 2009, Angewandte Chemie.

[36]  R. Clowes,et al.  Functionalized Conjugated Microporous Polymers , 2009 .

[37]  Zheng Wang,et al.  Development of a continuous-flow system for asymmetric hydrogenation using self-supported chiral catalysts. , 2009, Chemistry.

[38]  F. Schüth,et al.  Feste Katalysatoren für die selektive Niedertemperaturoxidation von Methan zu Methanol , 2009 .

[39]  M. Antonietti,et al.  Solid catalysts for the selective low-temperature oxidation of methane to methanol. , 2009, Angewandte Chemie.

[40]  Alexander M. Spokoyny,et al.  Synthesis, Properties, and Gas Separation Studies of a Robust Diimide-Based Microporous Organic Polymer , 2009 .

[41]  F. K. Hansen,et al.  Synthesis of acrylic polymer beads for solid-supported proline-derived organocatalysts. , 2009, Organic letters.

[42]  Y. Gun’ko,et al.  The first magnetic nanoparticle-supported chiral DMAP analogue: highly enantioselective acylation and excellent recyclability. , 2009, Chemistry.

[43]  Arne Thomas,et al.  Conjugated Microporous Polymer Networks via Yamamoto Polymerization , 2009 .

[44]  F. Švec,et al.  Nanoporous polymers for hydrogen storage. , 2009, Small.

[45]  Arne Thomas,et al.  Catalyst-free preparation of melamine-based microporous polymer networks through Schiff base chemistry. , 2009, Journal of the American Chemical Society.

[46]  S. Makhseed,et al.  Catalytic oxidation of sulphide ions using a novel microporous cobalt phthalocyanine network polymer in aqueous solution , 2009 .

[47]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[48]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[49]  Andrew I. Cooper,et al.  Conjugated Microporous Polymers , 2009 .

[50]  A. Cooper,et al.  Microporous poly(tri(4-ethynylphenyl)amine) networks:synthesis, properties, and atomistic simulation , 2009 .

[51]  Markus Antonietti,et al.  Porous polymers: enabling solutions for energy applications. , 2009, Macromolecular rapid communications.

[52]  M. Antonietti,et al.  Microporous Conjugated Poly(thienylene arylene) Networks , 2009 .

[53]  Jackie Y Ying,et al.  Microporous polyisocyanurate and its application in heterogeneous catalysis. , 2009, Chemistry.

[54]  Neil L. Campbell,et al.  High surface area amorphous microporous poly(aryleneethynylene) networks using tetrahedral carbon- and silicon-centred monomers. , 2009, Chemical communications.

[55]  Markus Antonietti,et al.  Toward Tailorable Porous Organic Polymer Networks: A High-Temperature Dynamic Polymerization Scheme Based on Aromatic Nitriles , 2009 .

[56]  D. MacMillan,et al.  The advent and development of organocatalysis , 2008, Nature.

[57]  Markus Antonietti,et al.  From microporous regular frameworks to mesoporous materials with ultrahigh surface area: dynamic reorganization of porous polymer networks. , 2008, Journal of the American Chemical Society.

[58]  F. Giacalone,et al.  Supported proline and proline-derivatives as recyclable organocatalysts. , 2008, Chemical Society reviews.

[59]  A. Cooper,et al.  Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. , 2008, Journal of the American Chemical Society.

[60]  S. Kaskel,et al.  Element-organic frameworks with high permanent porosity. , 2008, Chemical communications.

[61]  Arne Thomas,et al.  Toward stable interfaces in conjugated polymers: microporous poly(p-phenylene) and poly(phenyleneethynylene) based on a spirobifluorene building block. , 2008, Journal of the American Chemical Society.

[62]  Arne Thomas,et al.  Ionothermalsynthese von porösen kovalenten Triazin‐ Polymernetzwerken , 2008 .

[63]  Markus Antonietti,et al.  Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. , 2008, Angewandte Chemie.

[64]  A. Cooper,et al.  Mesoporous Poly(phenylenevinylene) Networks , 2008 .

[65]  P. Budd,et al.  Catalysis by microporous phthalocyanine and porphyrin network polymers , 2008 .

[66]  Neil L. Campbell,et al.  Conjugated microporous poly(phenylene butadiynylene)s. , 2008, Chemical communications.

[67]  Neil L. Campbell,et al.  Conjugated microporous poly(aryleneethynylene) networks. , 2007, Angewandte Chemie.

[68]  A. Sakakura,et al.  Widely useful DMAP-catalyzed esterification under auxiliary base- and solvent-free conditions. , 2007, Journal of the American Chemical Society.

[69]  S. Corr,et al.  A magnetic-nanoparticle-supported 4-N,N-dialkylaminopyridine catalyst: excellent reactivity combined with facile catalyst recovery and recyclability. , 2007, Angewandte Chemie.

[70]  C. Nájera,et al.  The Sonogashira reaction: a booming methodology in synthetic organic chemistry. , 2007, Chemical reviews.

[71]  M. Benaglia Recoverable and recyclable chiral organic catalysts , 2006 .

[72]  F. Cozzi Immobilization of Organic Catalysts: When, Why, and How , 2006 .

[73]  Steven J. Broadwater,et al.  Microencapsulated linear polymers: "soluble" heterogeneous catalysts. , 2006, Journal of the American Chemical Society.

[74]  V. S. Lin,et al.  Dialkylaminopyridine-functionalized mesoporous silica nanosphere as an efficient and highly stable heterogeneous nucleophilic catalyst. , 2005, Journal of the American Chemical Society.

[75]  Chuan-De Wu,et al.  A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. , 2005, Journal of the American Chemical Society.

[76]  Alan C. Spivey,et al.  Nucleophile Katalyse durch 4‐(Dialkylamino)pyridine neu aufgerollt: Optimierung von Reaktivität und Selektivität , 2004 .

[77]  S. Arseniyadis,et al.  Nucleophilic catalysis by 4-(dialkylamino)pyridines revisited--the search for optimal reactivity and selectivity. , 2004, Angewandte Chemie.

[78]  Peter I. Dalko,et al.  Im Goldenen Zeitalter der Organokatalyse , 2004 .

[79]  P. Dalko,et al.  In the golden age of organocatalysis. , 2004, Angewandte Chemie.

[80]  A. Corma,et al.  Heterogeneous Baylis-Hillman using a polystyrene-bound 4-(N-benzyl-N-methylamino)pyridine as reusable catalyst. , 2003, Chemical communications.

[81]  P. Budd,et al.  A nanoporous network polymer derived from hexaazatrinaphthylene with potential as an adsorbent and catalyst support , 2003 .

[82]  Chunmei Li,et al.  Soluble polymer-supported catalysts containing azo dyes. , 2002, Organic letters.

[83]  David C. Sherrington,et al.  PREPARATION, STRUCTURE AND MORPHOLOGY OF POLYMER SUPPORTS , 1999 .

[84]  U. Ragnarsson,et al.  Novel Amine Chemistry Based on DMAP-Catalyzed Acylation , 1998 .

[85]  F. Menger,et al.  A polymer-bound 4-aminopyridine: synthesis and reactivity , 1985 .

[86]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[87]  E. Scriven 4-Dialkylaminopyridines: super acylation and alkylation catalysts , 1983 .

[88]  I. M. Klotz,et al.  Poly(ethylenimines) with alternative (alkylamino)pyridines as nucleophilic catalysts , 1982 .

[89]  S. Shinkai,et al.  Polymer-bound “Dimethylaminopyridine” as a Catalyst for Facile Ester Synthesis , 1981 .

[90]  G. Höfle,et al.  4‐Dialkylaminopyridines as Highly Active Acylation Catalysts. [New synthetic method (25)] , 1978 .

[91]  W. Steglich,et al.  4‐Dialkylaminopyridine als hochwirksame Acylierungskatalysatoren , 1978 .

[92]  Y. Tohda,et al.  A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines , 1975 .

[93]  W. Steglich,et al.  4‐Dimethylamino‐pyridin, ein hochwirksamer Acylierungskatalysator , 1969 .

[94]  G. Höfle,et al.  N,N‐Dimethyl‐4‐pyridinamine, a Very Effective Acylation Catalyst , 1969 .