Potential slab avalanche release area identification from estimated winter terrain: a multi-scale, fuzzy logic approach

Abstract. Avalanche hazard assessment requires a very precise estimation of the release area, which still depends, to a large extent, on expert judgement of avalanche specialists. Therefore, a new algorithm for automated identification of potential avalanche release areas was developed. It overcomes some of the limitations of previous tools, which are currently not often applied in hazard mitigation practice. By introducing a multi-scale roughness parameter, fine-scale topography and its attenuation under snow influence is captured. This allows the assessment of snow influence on terrain morphology and, consequently, potential release area size and location. The integration of a wind shelter index enables the user to define release area scenarios as a function of the prevailing wind direction or single storm events. A case study illustrates the practical usefulness of this approach for the definition of release area scenarios under varying snow cover and wind conditions. A validation with historical data demonstrated an improved estimation of avalanche release areas. Our method outperforms a slope-based approach, in particular for more frequent avalanches; however, the application of the algorithm as a forecasting tool remains limited, as snowpack stability is not integrated. Future research activity should therefore focus on the coupling of the algorithm with snowpack conditions.

[1]  Peter Sampl,et al.  Avalanche simulation with SAMOS , 2004, Annals of Glaciology.

[2]  Joseph. Wood,et al.  The geomorphological characterisation of Digital Elevation Models , 1996 .

[3]  D. Mcclung,et al.  Characteristics of terrain, snow supply and forest cover for avalanche initiation caused by logging , 2001, Annals of Glaciology.

[4]  Kelly Elder,et al.  Spatial Snow Modeling of Wind-Redistributed Snow Using Terrain-Based Parameters , 2002 .

[5]  M. Bavay,et al.  Understanding snow-transport processes shaping the mountain snow-cover , 2010 .

[6]  Brigitte Werners,et al.  Aggregation Models in Mathematical Programming , 1988 .

[7]  Claudia Notarnicola,et al.  Data-driven mapping of avalanche release areas: a case study in South Tyrol, Italy , 2013, Natural Hazards.

[8]  J. Schweizer,et al.  Spatial characteristics of avalanche activity in an Alpine valley - a GIS approach , 1998 .

[9]  Andreas Paul Zischg,et al.  Modelling the system behaviour of wet snow avalanches using an expert system approach for risk management on high alpine traffic roads , 2005 .

[10]  Santiago Beguería,et al.  Validation and Evaluation of Predictive Models in Hazard Assessment and Risk Management , 2006 .

[11]  Donald M. Wilkie,et al.  The validation problem , 1985, Behavioral and Brain Sciences.

[12]  C. Thorne,et al.  Quantitative analysis of land surface topography , 1987 .

[13]  Fuzzy Logic Method for Landslide Susceptibility Mapping , “ Rio Blanco ” , Nicaragua , 2007 .

[14]  T. Erickson,et al.  Persistence of Topographic Controls on the Spatial Distribution of Snow in Rugged Mountain Terrain , Colorado , USA , 2003 .

[15]  R. Purves,et al.  Influence of snow depth distribution on surface roughness in alpine terrain: a multi-scale approach , 2013 .

[16]  J. Schweizer,et al.  Snow avalanche formation , 2003 .

[17]  Chang-Jo Chung,et al.  STARTER: a statistical GIS-based model for the prediction of snow avalanche susceptibility using terrain features—application to Alta Val Badia, Italian Dolomites , 2005 .

[18]  Christopher J. Keylock,et al.  Application of statistical and hydraulic-continuum dense-snow avalanche models to five real European sites , 2000 .

[19]  Javier Chueca Cía,et al.  A proposal for avalanche susceptibility mapping in the Pyrenees using GIS: the Formigal-Peyreget area (Sheet 145-I; scale 1:25.000) , 2014 .

[20]  P. Bartelt,et al.  Back-Calculation of Small Avalanches with the 2D Avalanche Dynamics Model Ramms: Four Events Artificially Triggered at the Seehore Test Site in Aosta Valley (NW Italy) , 2012 .

[21]  Urs Gruber Schmid,et al.  High-frequency avalanches: release area characteristics and run-out distances , 2003 .

[22]  I. Evans Statistical Characterization of Altitude Matrices by Computer. Report 6. An Integrated System of Terrain Analysis and Slope Mapping. , 1979 .

[23]  Hal Caswell,et al.  12 – The Validation Problem , 1976 .

[24]  Francesco Ferro,et al.  Avalanche hazard mapping over large undocumented areas , 2011 .

[25]  Chuen-Tsai Sun,et al.  Neuro-fuzzy And Soft Computing: A Computational Approach To Learning And Machine Intelligence [Books in Brief] , 1997, IEEE Transactions on Neural Networks.

[26]  J. M. Sappington,et al.  Quantifying Landscape Ruggedness for Animal Habitat Analysis: A Case Study Using Bighorn Sheep in the Mojave Desert , 2007 .

[27]  A. Andrés,et al.  Mapping of avalanche start zones susceptibility: Arazas basin, Ordesa and Monte Perdido National Park (Spanish Pyrenees) , 2012 .

[28]  J. Schweizer,et al.  Characteristics of human-triggered avalanches , 2001 .

[29]  Marc Christen,et al.  RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain , 2010 .

[30]  P. Gauer Numerical modeling of blowing and drifting snow in Alpine terrain , 2001, Journal of Glaciology.

[31]  Carlos Henrique Grohmann,et al.  Multiscale Analysis of Topographic Surface Roughness in the Midland Valley, Scotland , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[33]  Andreas Stoffel,et al.  Spatial characteristics of avalanche activity in an Alpine valley — a GIS approach , 1998, Annals of Glaciology.

[34]  Uwe Fink,et al.  Fuzzy Sets Decision Making And Expert Systems , 2016 .

[35]  Andreas Stoffel,et al.  Automated identification of potential snow avalanche release areas based on digital elevation models , 2013 .

[36]  R. Perla Slab avalanche measurements , 1977 .

[37]  Günter Blöschl,et al.  Scaling issues in snow hydrology , 1999 .

[38]  M. Lehning,et al.  Inhomogeneous precipitation distribution and snow transport in steep terrain , 2008 .

[39]  D. Quattrochi,et al.  Scale, Multiscaling, Remote Sensing, and GIS , 1997 .

[40]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[41]  Edward J. Rykiel,et al.  Testing ecological models: the meaning of validation , 1996 .

[42]  Stefan Margreth,et al.  Beurteilung von Sekundärlawinen bei künstlicher Lawinenauslösung. Anleitung für die Praxis , 2012 .

[43]  M. Maggioni,et al.  The influence of topographic parameters on avalanche release dimension and frequency , 2003 .

[44]  Michael Lehning,et al.  Persistence in intra‐annual snow depth distribution: 1. Measurements and topographic control , 2011 .

[45]  J. Schweizer,et al.  Snow cover properties for skier triggering of avalanches , 2001 .

[46]  Ron Simenhois,et al.  THE EFFECT OF CHANGING SLAB THICKNESS ON FRACTURE PROPAGATION , 2008 .

[47]  Joachim Heierli,et al.  Measurement of crack‐face friction in collapsed weak snow layers , 2009 .

[48]  R. D. Hobson Surface roughness in topography: quantitative approach , 2019, Spatial Analysis in Geomorphology.

[49]  Michael Lehning,et al.  Mountain snow distribution governed by an altitudinal gradient and terrain roughness , 2011 .

[50]  M. Schneebeli,et al.  Orographic effects on snow deposition patterns in mountainous terrain , 2014 .

[51]  T. Erickson,et al.  Persistence of topographic controls on the spatial distribution of snow in rugged mountain terrain, Colorado, United States , 2005 .

[52]  J. S. Barton,et al.  The development of a rule-based spatial model of wind transport and deposition of snow , 1998, Annals of Glaciology.

[53]  Michael Lehning,et al.  Scaling properties of wind and snow depth distribution in an Alpine catchment , 2011 .

[54]  Betty Sovilla,et al.  Linking snow depth to avalanche release area size: measurements from the Vallée de la Sionne field site , 2016 .

[55]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[56]  Christian Ginzler,et al.  High Resolution DEM Generation in High‐Alpine Terrain Using Airborne Remote Sensing Techniques , 2012, Trans. GIS.