X-ray absorption spectra of water from first principles calculations.

We present a series of ab initio calculations of the x-ray absorption cross section (XAS) of ice and liquid water at ambient conditions. Our results show that all available experimental data and theoretical results are consistent with the standard model of the liquid as comprising molecules with approximately four hydrogen bonds. Our simulations of ice XAS including the lowest lying excitonic state are in excellent agreement with experiment and those of a quasitetrahedral model of water are in reasonable agreement with recent measurements. Hence we propose that the standard, quasitetrahedral model of water, although approximate, represents a reasonably accurate description of the local structure of the liquid.