Cassiopeia A: dust factory revealed via submillimetre polarimetry

If Type II supernovae – the evolutionary end points of short-lived, massive stars – produce a significant quantity of dust (>0.1 M⊙) then they can explain the rest-frame far-infrared emission seen in galaxies and quasars in the first Gyr of the Universe. Submillimetre (submm) observations of the Galactic supernova remnant, Cas A, provided the first observational evidence for the formation of significant quantities of dust in Type II supernovae. In this paper, we present new data which show that the submm emission from Cas A is polarized at a level significantly higher than that of its synchrotron emission. The orientation is consistent with that of the magnetic field in Cas A, implying that the polarized submm emission is associated with the remnant. No known mechanism would vary the synchrotron polarization in this way and so we attribute the excess polarized submm flux to cold dust within the remnant, providing fresh evidence that cosmic dust can form rapidly. This is supported by the presence of both polarized and unpolarized dust emission in the north of the remnant where there is no contamination from foreground molecular clouds. The inferred dust polarization fraction is unprecedented (fpol∼ 30 per cent) which, coupled with the brief time-scale available for grain alignment (<300 yr), suggests that supernova dust differs from that seen in other Galactic sources (where fpol= 2−7 per cent) or that a highly efficient grain alignment process must operate in the environment of a supernova remnant.

[1]  R. Davies,et al.  Astronomical Society of the Pacific Conference Series , 2010 .

[2]  E. Grün,et al.  Cosmic Dust - Near and Far , 2009 .

[3]  Xiaohui Fan,et al.  Thermal Emission from Warm Dust in the Most Distant Quasars , 2008, 0806.3022.

[4]  O. Krause,et al.  The Cassiopeia A Supernova Was of Type IIb , 2008, Science.

[5]  A. Steele,et al.  Graphite Whiskers in CV3 Meteorites , 2008, Science.

[6]  A. Lazarian,et al.  Alignment of Dust with Magnetic Inclusions: Radiative Torques and Superparamagnetic Barnett and Nuclear Relaxation , 2008, 0801.0265.

[7]  K. Isaak,et al.  Environments of z > 5 quasars: searching for protoclusters at submillimetre wavelengths , 2007, Monthly Notices of the Royal Astronomical Society.

[8]  J. Rho,et al.  Freshly Formed Dust in the Cassiopeia A Supernova Remnant as Revealed by the Spitzer Space Telescope , 2007, 0709.2880.

[9]  A. Chrysostomou,et al.  Magnetic fields in massive star-forming regions , 2007, 0709.0256.

[10]  A. Lazarian,et al.  Subsonic Mechanical Alignment of Irregular Grains , 2007, 0707.3805.

[11]  A. Lazarian,et al.  Radiative torques: analytical model and basic properties , 2007, 0707.0886.

[12]  A. Lazarian,et al.  Tracing Magnetic Fields with Aligned Grains , 2007, 0707.0858.

[13]  E. Dwek,et al.  The Evolution of Dust in the Early Universe with Applications to the Galaxy SDSS J1148+5251 , 2007, 0705.3799.

[14]  Berkeley,et al.  A Spitzer Space Telescope Study of SN 2003gd: Still No Direct Evidence that Core-Collapse Supernovae are Major Dust Factories , 2007, 0705.1439.

[15]  A. Lazarian,et al.  Radiative torque alignment: essential physical processes , 2007, 0707.3645.

[16]  Xiaohui Fan,et al.  Millimeter and Radio Observations of z ∼ 6 Quasars , 2007, The Astronomical Journal.

[17]  S. Bianchi,et al.  Dust formation and survival in supernova ejecta , 2007, 0704.0586.

[18]  B. Williams,et al.  Spitzer Space Telescope Observations of Kepler’s Supernova Remnant: A Detailed Look at the Circumstellar Dust Component , 2007, astro-ph/0703660.

[19]  R. Gruendl,et al.  Supernova Remnants in the Magellanic Clouds. VII. Infrared Emission from Supernova Remnants , 2006, astro-ph/0607598.

[20]  J. Fabbri,et al.  Massive-Star Supernovae as Major Dust Factories , 2006, Science.

[21]  B. Williams,et al.  Dust Destruction in Type Ia Supernova Remnants in the Large Magellanic Cloud , 2006, astro-ph/0602313.

[22]  T. Wilson,et al.  An alternate estimate of the mass of dust in Cassiopeia A , 2004, astro-ph/0412533.

[23]  O. Krause,et al.  No cold dust within the supernova remnant Cassiopeia A , 2004, Nature.

[24]  E. Dwek The Detection of Cold Dust in Cassiopeia A: Evidence for the Formation of Metallic Needles in the Ejecta , 2004, astro-ph/0401074.

[25]  A. Taylor,et al.  Scientific optimization of a ground-based CMB polarization experiment , 2003, astro-ph/0309610.

[26]  S. Masi,et al.  First detection of polarization of the submillimetre diffuse galactic dust emission by Archeops , 2003, astro-ph/0306222.

[27]  Edinburgh,et al.  Quasars as probes of the submillimetre cosmos at z > 5 — I. Preliminary SCUBA photometry , 2003, astro-ph/0308132.

[28]  L. Dunne,et al.  Type II supernovae as a significant source of interstellar dust , 2003, Nature.

[29]  D. O. Astronomy,et al.  Dust in the Early Universe: Dust Formation in the Ejecta of Population III Supernovae , 2003, astro-ph/0307108.

[30]  A. Chieffi,et al.  Evolution, Explosion, and Nucleosynthesis of Core-Collapse Supernovae , 2003, astro-ph/0304185.

[31]  E. I. Robson,et al.  A submillimetre imaging polarimeter at the James Clerk Maxwell Telescope , 2003, astro-ph/0302609.

[32]  M. Edmunds,et al.  Dust formation in early galaxies , 2003, astro-ph/0302566.

[33]  A. Lazarian,et al.  Grain Acceleration by Magnetohydrodynamic Turbulence: Gyroresonance Mechanism , 2003, astro-ph/0301007.

[34]  L. Rudnick,et al.  The Identification of Infrared Synchrotron Radiation from Cassiopeia A , 2002, astro-ph/0212544.

[35]  B. Matthews,et al.  Magnetic Fields in Star-forming Molecular Clouds. IV. Polarimetry of the Filamentary NGC 2068 Cloud in Orion B , 2002, astro-ph/0201348.

[36]  E. Dwek,et al.  Dust in the Tycho, Kepler and Crab supernova remnants , 2001 .

[37]  B. Matthews,et al.  Magnetic Fields in Star-forming Molecular Clouds. II. The Depolarization Effect in the OMC-3 Filament of Orion A , 2001, astro-ph/0106394.

[38]  M. Juvela,et al.  Theoretical Models of Polarized Dust Emission from Protostellar Cores , 2001, astro-ph/0104231.

[39]  P. Ferrara Dust Formation in Primordial Type II Supernovae , 2000, astro-ph/0009176.

[40]  Jessie L. Dotson,et al.  A Primer on Far‐Infrared Polarimetry , 2000 .

[41]  William B. Sparks,et al.  Panoramic Polarimetry Data Analysis , 1999 .

[42]  M. Wright,et al.  The Supernova Remnant Cassiopeia A at Millimeter Wavelengths , 1999 .

[43]  Hilo,et al.  SCUBA: A Common - user submillimetre camera operating on the James Clerk Maxwell telescope , 1998, astro-ph/9809122.

[44]  Howard A. Bushouse,et al.  Astronomical Data Analysis Software and Systems VII , 1998 .

[45]  A. Lazarian Gold Alignment and Internal Dissipation , 1997, astro-ph/9702136.

[46]  P. Barthel,et al.  FAR INFRARED AND SUBMILLIMETRE UNIVERSE , 1997 .

[47]  J. Weingartner,et al.  Radiative Torques on Interstellar Grains: I. Superthermal Spinup , 1996, astro-ph/9605046.

[48]  S. Hanany,et al.  Grain alignment by ambipolar diffusion in molecular clouds , 1995 .

[49]  J. Keohane,et al.  The Polarization and Depolarization of Radio Emission from Supernova Remnant Cassiopeia A , 1995 .

[50]  D. Milne,et al.  An atlas of supernova remnant magnetic fields , 1988 .

[51]  E. Dwek,et al.  Physical processes and infrared emission from the Cassiopeia A supernova remnant , 1987 .

[52]  J. Kenney,et al.  Cassiopeia A at 86 Gigahertz : spectral and rotation measure differences. , 1985 .

[53]  D. F. Cioffi,et al.  Internal Faraday rotation effects in transparent synchrotron sources , 1980 .

[54]  S. Gull The X-ray, Optical and Radio Properties of Young Supernova Remnants , 1975 .

[55]  A. Dolginov Orientation of interstellar and interplanetary grains , 1972 .

[56]  T. Gold,et al.  Polarization of Starlight , 1952, Nature.

[57]  J. Greenstein,et al.  The Polarization of Starlight by Aligned Dust Grains. , 1951 .

[58]  J. Greenstein,et al.  The origin of interstellar polarization. , 1950 .