MeV: MultiExperiment Viewer

MultiExperiment Viewer (MeV) is a freely available software application that puts modern bioinformatics tools for integrative data analysis in the hands of bench biologists. MeV is a versatile microarray data analysis tool, incorporating sophisticated algorithms for clustering, visualization, classification, statistical analysis, and biological theme discovery from single or multiple experiments. This chapter gives an overview of MeV technical details and its use in a real setting.

[1]  Roger E Bumgarner,et al.  Multiclass classification of microarray data with repeated measurements: application to cancer , 2003, Genome Biology.

[2]  N. Socci,et al.  Leptin-specific patterns of gene expression in white adipose tissue. , 2000, Genes & development.

[3]  J. Hoheisel,et al.  Correspondence analysis applied to microarray data , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Mesirov,et al.  Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Gordon K. Smyth,et al.  limma: Linear Models for Microarray Data , 2005 .

[6]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[7]  R. Simon,et al.  Controlling the number of false discoveries: application to high-dimensional genomic data , 2004 .

[8]  A I Saeed,et al.  TM4: a free, open-source system for microarray data management and analysis. , 2003, BioTechniques.

[9]  William Stafford Noble,et al.  Analysis of strain and regional variation in gene expression in mouse brain , 2001, Genome Biology.

[10]  Guy Perrière,et al.  Between-group analysis of microarray data , 2002, Bioinform..

[11]  Welch Bl THE GENERALIZATION OF ‘STUDENT'S’ PROBLEM WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE INVOLVED , 1947 .

[12]  John Boyle,et al.  Cytoscape: a community-based framework for network modeling. , 2009, Methods in molecular biology.

[13]  R. Tibshirani,et al.  Diagnosis of multiple cancer types by shrunken centroids of gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  John Quackenbush,et al.  An improved empirical bayes approach to estimating differential gene expression in microarray time-course data: BETR (Bayesian Estimation of Temporal Regulation) , 2009, BMC Bioinformatics.

[15]  Douglas A. Hosack,et al.  Identifying biological themes within lists of genes with EASE , 2003, Genome Biology.

[16]  Robert Tibshirani,et al.  SAM “Significance Analysis of Microarrays” Users guide and technical document , 2002 .

[17]  Danh V. Nguyen,et al.  Multi-class cancer classification via partial least squares with gene expression profiles , 2002, Bioinform..

[18]  Gordon K Smyth,et al.  Statistical Applications in Genetics and Molecular Biology Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2011 .

[19]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[20]  T. J. Breen,et al.  Biostatistical Analysis (2nd ed.). , 1986 .

[21]  G. Keppel Data analysis for research designs , 1990 .

[22]  D Haussler,et al.  Knowledge-based analysis of microarray gene expression data by using support vector machines. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[23]  B. Manly Randomization, Bootstrap and Monte Carlo Methods in Biology , 2018 .

[24]  Brad T. Sherman,et al.  DAVID: Database for Annotation, Visualization, and Integrated Discovery , 2003, Genome Biology.

[25]  Rainer Breitling,et al.  Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments , 2004, FEBS letters.

[26]  J. Dopazo,et al.  Phylogenetic Reconstruction Using an Unsupervised Growing Neural Network That Adopts the Topology of a Phylogenetic Tree , 1997, Journal of Molecular Evolution.

[27]  Ash A. Alizadeh,et al.  'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns , 2000, Genome Biology.

[28]  John Quackenbush,et al.  CGHAnalyzer: a stand-alone software package for cancer genome analysis using array-based DNA copy number data , 2005, Bioinform..

[29]  Seon-Young Kim,et al.  PAGE: Parametric Analysis of Gene Set Enrichment , 2005, BMC Bioinform..

[30]  R. Gentleman,et al.  Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival. , 2004, Blood.

[31]  Ka Yee Yeung,et al.  Validating clustering for gene expression data , 2001, Bioinform..

[32]  Roger E Bumgarner,et al.  Correction: Multiclass classification of microarray data with repeated measurements: application to cancer , 2006, Genome Biology.

[33]  A. Butte,et al.  Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Ron Shamir,et al.  Clustering Gene Expression Patterns , 1999, J. Comput. Biol..

[35]  Rafael A. Irizarry,et al.  Bioinformatics and Computational Biology Solutions using R and Bioconductor , 2005 .

[36]  Zhen Jiang,et al.  Bioconductor Project Bioconductor Project Working Papers Year Paper Extensions to Gene Set Enrichment , 2013 .

[37]  Joshua M. Stuart,et al.  A Gene Expression Map for Caenorhabditis elegans , 2001, Science.

[38]  Alfonso Valencia,et al.  A hierarchical unsupervised growing neural network for clustering gene expression patterns , 2001, Bioinform..

[39]  David J. Reiss,et al.  The Gaggle: An open-source software system for integrating bioinformatics software and data sources , 2006, BMC Bioinformatics.

[40]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  John Quackenbush,et al.  Seeded Bayesian Networks: Constructing genetic networks from microarray data , 2008, BMC Systems Biology.

[42]  S. Dudoit,et al.  Multiple Hypothesis Testing in Microarray Experiments , 2003 .