Periodic solutions for a population dynamics problem with age-dependence and spatial structure

Using a linear model with age-dependence and spatial structure we show how a periodical supply of individuals will transform an exponentially decaying distribution of population into a non-trivial asymptotically stable periodic distribution. Next we give an application to an epidemic model.

[1]  M. Kubo Subdifferential operator approach to nonlinear age-dependent population dynamics , 1988 .

[2]  G. Webb Theory of Nonlinear Age-Dependent Population Dynamics , 1985 .

[3]  Some variational inequalities for age-dependent population dynamics , 1991 .

[4]  Pierangelo Marcati Asymptotic Behavior in Age-Dependent Population Dynamics with Hereditary Renewal Law , 1981 .

[5]  Morton E. Gurtin,et al.  Diffusion models for age-structured populations , 1981 .

[6]  Morton E. Gurtin,et al.  Product solutions and asymptotic behavior for age-dependent, dispersing populations , 1982 .

[7]  Mimmo Iannelli,et al.  A class of nonlinear diffusion problems in age-dependent population dynamics☆ , 1983 .

[8]  R. MacCamy,et al.  A population model with nonlinear diffusion , 1981 .

[9]  G. F. Webb,et al.  An age-dependent epidemic model with spatial diffusion , 1980 .

[10]  Age-dependent population diffusion with external constraint , 1982 .

[11]  Mimmo Iannelli,et al.  Endemic thresholds and stability in a class of age-structured epidemics , 1988 .

[12]  M. Gurtin,et al.  Letter: A system of equations for age-dependent population diffusion. , 1973, Journal of theoretical biology.

[13]  Gabriella Di Blasio,et al.  Non-linear age-dependent population diffusion , 1979 .

[14]  M. Langlais,et al.  Large time behavior in a nonlinear age-dependent population dynamics problem with spatial diffusion , 1988, Journal of mathematical biology.

[15]  K. Kunisch,et al.  Nonlinear age-dependent population dynamics with random diffusion , 1985 .