Becker's conjecture on Mahler functions

In 1994, Becker conjectured that if $F(z)$ is a $k$-regular power series, then there exists a $k$-regular rational function $R(z)$ such that $F(z)/R(z)$ satisfies a Mahler-type functional equation with polynomial coefficients where the initial coefficient satisfies $a_0(z)=1$. In this paper, we prove Becker's conjecture in the best-possible form; we show that the rational function $R(z)$ can be taken to be a polynomial $z^\gamma Q(z)$ for some explicit non-negative integer $\gamma$ and such that $1/Q(z)$ is $k$-regular.

[1]  Jeffrey Shallit,et al.  The Ring of k-Regular Sequences , 1990, Theor. Comput. Sci..

[2]  Patrice Philippon Groupes de Galois et nombres automatiques , 2015, J. Lond. Math. Soc..

[3]  M. Coons Zero order estimates for Mahler functions , 2016, 1606.00643.

[4]  Jeffrey Shallit,et al.  The ring of k-regular sequences, II , 2003, Theor. Comput. Sci..

[5]  Algebraic independence of Mahler functions via radial asymptotics , 2014, 1412.7906.

[6]  P. Becker k-Regular Power Series and Mahler-Type Functional Equations , 1994 .

[8]  Algebraic independence of the values of functions satisfying Mahler type functional equations under the transformation represented by a power relatively prime to the characteristic of the base field , 2018 .

[9]  A. J. Poorten,et al.  Arithmetic properties of automata: regular sequences. , 1988 .

[10]  A. J. Poorten,et al.  Arithmetic properties of the solutions of a class of functional equations. , 1982 .

[11]  J. Bell,et al.  A problem around Mahler functions , 2013, 1303.2019.

[12]  Philippe Dumas Algebraic Aspects of B-regular Series , 1993, ICALP.

[13]  Jason P. Bell,et al.  Transcendence tests for Mahler functions , 2015, 1511.07530.

[14]  Boris Adamczewski,et al.  Méthode de Mahler : relations linéaires, transcendance et applications aux nombres automatiques , 2015, 1508.07158.

[15]  M. Coons,et al.  Number Theoretic Aspects of Regular Sequences , 2018 .

[16]  K. Nishioka New approach in Mahler's method. , 1990 .

[17]  J. Roques On the reduction modulo $p$ of Mahler equations , 2017 .

[18]  J. Bell,et al.  A PROBLEM ABOUT MAHLER FUNCTIONS , 2013 .

[19]  Philippe Dumas Récurrences mahlériennes, suites automatiques, études asymptotiques , 1993 .

[20]  Kumiko Nishioka Mahler functions and transcendence , 1996 .

[21]  Julien Roques On the algebraic relations between Mahler functions , 2017 .