Bounds on the largest Kronecker and induced multiplicities of finite groups

Abstract We give new bounds and asymptotic estimates on the largest Kronecker and induced multiplicities of finite groups. The results apply to large simple groups of Lie type and other groups with few conjugacy classes.

[1]  Christian Ikenmeyer The Saxl conjecture and the dominance order , 2015, Discret. Math..

[2]  Greta Panova,et al.  Kronecker products, characters, partitions, and the tensor square conjectures , 2013, 1304.0738.

[3]  Anatoly M. Vershik,et al.  Numerical experiments in problems of asymptotic representation theory , 2010 .

[4]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[5]  K. Spindler Symmetric and alternating groups , 2018 .

[6]  N. Fine,et al.  Pairs of commuting matrices over a finite field , 1960 .

[7]  P. Gallagher The number of conjugacy classes in a finite group , 1970 .

[8]  László Pyber,et al.  Upper Bounds for the Number of Conjugacy Classes of a Finite Group , 1997 .

[9]  On the Number of Conjugacy Classes of a Finite Group , 1993 .

[10]  Antonio Vera López,et al.  On the number of conjugacy classes in a finite group , 1988 .

[11]  A lower bound for the number of conjugacy classes in a finite nilpotent group. , 1979 .

[12]  Marc A. A. van Leeuwen,et al.  Part 3. The Littlewood-Richardson Rule, and Related Combinatorics , 2001 .

[13]  Alexander I. Bufetov,et al.  On the Vershik–Kerov Conjecture Concerning the Shannon–McMillan–Breiman Theorem for the Plancherel Family of Measures on the Space of Young Diagrams , 2010, 1001.4275.

[14]  P. Diaconis,et al.  Supercharacters and superclasses for algebra groups , 2007 .

[15]  G. Higman,et al.  Enumerating p‐Groups. I: Inequalities , 1960 .

[16]  L. Pyber,et al.  Finite Groups Have Many Conjugacy Classes , 1992 .

[17]  A. Soffer Upper bounds on the number of conjugacy classes in unitriangular groups , 2014, 1411.5389.

[18]  I. Isaacs Bounding the order of a group with a large character degree , 2011 .

[19]  J. Baik,et al.  On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.

[20]  Ning Yan Representation theory of the finite unipotent linear groups , 2001 .

[21]  Andrei Jaikin-Zapirain On the number of conjugacy classes of finite nilpotent groups , 2011 .

[22]  I. Isaacs Counting characters of upper triangular groups , 2007 .

[23]  A. Vershik,et al.  Asymptotic of the largest and the typical dimensions of irreducible representations of a symmetric group , 1985 .

[24]  B. Baumeister,et al.  Finite groups have more conjugacy classes , 2015, 1503.04046.

[25]  Anatoly M. Vershik,et al.  Asymptotic theory of characters of the symmetric group , 1981 .

[26]  A. A. Schaeffer Fry,et al.  Finite groups with an irreducible character of large degree , 2015, 1505.05138.

[27]  Martino Garonzi,et al.  On the number of conjugacy classes of a permutation group , 2015, J. Comb. Theory, Ser. A.

[28]  Mark B. Wells,et al.  Characters of the symmetric groups of degree 15 and 16 , 1954 .

[29]  D. Romik The Surprising Mathematics of Longest Increasing Subsequences , 2015 .

[30]  E. Kowalski The Large Sieve and its Applications: Arithmetic Geometry, Random Walks and Discrete Groups , 2008 .

[31]  Philippe Biane,et al.  Representations of Symmetric Groups and Free Probability , 1998 .

[32]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[33]  Igor Pak,et al.  WHEN AND HOW n CHOOSE k , 1997 .

[34]  R. Guralnick,et al.  Bounds on the number and sizes of conjugacy classes in finite Chevalley groups with applications to derangements , 2009, 0902.2238.

[35]  Greta Panova,et al.  On the largest Kronecker and Littlewood-Richardson coefficients , 2018, J. Comb. Theory, Ser. A.

[36]  B. Logan,et al.  A Variational Problem for Random Young Tableaux , 1977 .

[37]  A. Moretó Complex group algebras of finite groups: Brauer’s Problem 1 , 2005 .

[38]  Thomas Michael Keller,et al.  Finite groups have even more conjugacy classes , 2008, 0812.2590.

[39]  M. Larsen,et al.  The largest irreducible representations of simple groups , 2010, 1010.5628.

[40]  John McKay,et al.  The largest degrees of irreducible characters of the symmetric group , 1976 .

[41]  Pham Huu Tiep,et al.  Conjugacy action, induced representations and the Steinberg square for simple groups of Lie type , 2012, 1209.1768.

[42]  Charles C. Sims,et al.  Enumerating p‐Groups , 1965 .

[43]  R. Stanley Increasing and Decreasing Subsequences , 2006 .

[44]  A. M. Pass,et al.  Representations of symmetric groups with maximal dimension , 1992 .

[45]  C. R. Vinroot Twisted Frobenius–Schur indicators of finite symplectic groups , 2005 .

[46]  A. Moretó Complex group algebras of finite groups: Brauer's Problem 1 , 2007 .

[47]  Noah Snyder Groups with a character of large degree , 2006, math/0603239.

[48]  Daniel N. Rockmore,et al.  Separation of Variables and the Computation of Fourier Transforms on Finite Groups, II , 2015, Discrete Mathematics & Theoretical Computer Science.

[49]  Robert M. Guralnick,et al.  ON THE COMMUTING PROBABILITY IN FINITE GROUPS , 2006 .

[50]  W. Fulton Eigenvalues, invariant factors, highest weights, and Schubert calculus , 1999, math/9908012.

[51]  David A. Craven Symmetric group character degrees and hook numbers , 2007, 0709.0897.

[52]  Mark Sellke,et al.  The Saxl conjecture for fourth powers via the semigroup property , 2015, 1511.02387.

[53]  Marc A. A. van Leeuwen,et al.  The Littlewood-Richardson rule, and related combinatorics , 1999, math/9908099.