Anelastic deformation of a Pd40Cu30Ni10P20 bulk metallic glass during nanoindentation

Time-dependent deformation processes during nanoindentation have been investigated on a Pd40Cu30Ni10P20 bulk metallic glass. Deformation under constant load has been studied as a function of prior loading rate and temperature. The constant-load displacement of the indenter into the sample shows classic relaxation kinetics and reveals the importance of anelasticity for the mechanical behavior of metallic glasses at the nanoscale.

[1]  J. Eckert,et al.  Plastic deformation and mechanical softening of Pd_40Cu_30Ni_10P_20 bulk metallic glass during nanoindentation , 2005 .

[2]  T. Nieh,et al.  New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling , 2004 .

[3]  S. Suriñach,et al.  Thermal characterization of Cu60ZrxTi40−x metallic glasses (x=15, 20, 22, 25, 30) , 2004 .

[4]  H. Bei,et al.  Theoretical strength and the onset of plasticity in bulk metallic glasses investigated by nanoindentation with a spherical indenter. , 2004, Physical review letters.

[5]  M. Ashby,et al.  Bulk metallic glasses: what are they good for? , 2004 .

[6]  A. L. Greer,et al.  Nanoindentation studies of shear banding in fully amorphous and partially devitrified metallic alloys , 2004 .

[7]  S. Yoda,et al.  Hard metallic glass of tungsten-based alloy , 2004 .

[8]  Christopher A. Schuh,et al.  A nanoindentation study of serrated flow in bulk metallic glasses , 2003 .

[9]  T. Mattsson,et al.  Calculating the vacancy formation energy in metals: Pt, Pd, and Mo , 2002 .

[10]  G. Subhash,et al.  Characterization of uniaxial compressive response of bulk amorphous Zr–Ti–Cu–Ni–Be alloy , 2002 .

[11]  Gang Feng,et al.  Effects of Creep and Thermal Drift on Modulus Measurement Using Depth-sensing Indentation , 2002 .

[12]  A. Inoue,et al.  Synthesis of Fe–Cr–Mo–C–B–P bulk metallic glasses with high corrosion resistance , 2002 .

[13]  T. Nieh,et al.  Dynamic response of a Pd40Ni40P20 bulk metallic glass in tension , 2002 .

[14]  Y. Golovin,et al.  Serrated plastic flow during nanoindentation of a bulk metallic glass , 2001 .

[15]  K. Zeng,et al.  An analysis of load–penetration curves from instrumented indentation , 2001 .

[16]  Yang-Tse Cheng,et al.  Scaling relationships in conical indentation of elastic-perfectly plastic solids , 1999 .

[17]  J. Eckert,et al.  Effect of crystalline precipitations on the mechanical behavior of bulk glass forming Zr-based alloys , 1998 .

[18]  V. Ocelík,et al.  Anelastic deformation processes in metallic glasses and activation energy spectrum model , 1997 .

[19]  B. Cantor,et al.  Anelastic crossover and creep recovery spectra in Fe40Ni40B20 metallic glass , 1996 .

[20]  Hugh Alan Bruck,et al.  Quasi-static constitutive behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk amorphous alloys , 1994 .

[21]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[22]  Frans Spaepen,et al.  A microscopic mechanism for steady state inhomogeneous flow in metallic glasses , 1977 .

[23]  L. A. Davis,et al.  Deformation and fracture of an amorphous metallic alloy at high pressure , 1975 .