The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II

[1]  N. Proudfoot,et al.  Human 5′ → 3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites , 2004, Nature.

[2]  Anton Meinhart,et al.  Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors , 2004, Nature.

[3]  M. Nashimoto,et al.  A Novel Endonucleolytic Mechanism to Generate the CCA 3′ Termini of tRNA Molecules in Thermotoga maritima* , 2004, Journal of Biological Chemistry.

[4]  N. Krogan,et al.  Transitions in RNA polymerase II elongation complexes at the 3′ ends of genes , 2004, The EMBO journal.

[5]  S. Buratowski,et al.  Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3' end processing. , 2004, Molecular cell.

[6]  A. Marchfelder,et al.  Endonucleolytic processing of CCA‐less tRNA precursors by RNase Z in Bacillus subtilis , 2003, The EMBO journal.

[7]  S. Buratowski,et al.  The CTD code , 2003, Nature Structural Biology.

[8]  T. Hughes,et al.  Organization and Function of APT, a Subcomplex of the Yeast Cleavage and Polyadenylation Factor Involved in the Formation of mRNA and Small Nucleolar RNA 3′-Ends* , 2003, Journal of Biological Chemistry.

[9]  J. Butler,et al.  Degradation of Normal mRNA in the Nucleus of Saccharomyces cerevisiae , 2003, Molecular and Cellular Biology.

[10]  S. Peltz,et al.  Nuclear mRNA surveillance. , 2003, Current opinion in cell biology.

[11]  Lionel Minvielle-Sebastia,et al.  Pti1p and Ref2p found in association with the mRNA 3′ end formation complex direct snoRNA maturation , 2003, The EMBO journal.

[12]  A. Greenleaf,et al.  The RNA polymerase II CTD kinase CTDK-I affects pre-mRNA 3' cleavage/polyadenylation through the processing component Pti1p. , 2002, Molecular cell.

[13]  G. Cagney,et al.  RNA Polymerase II Elongation Factors of Saccharomyces cerevisiae: a Targeted Proteomics Approach , 2002, Molecular and Cellular Biology.

[14]  George M Sheldrick,et al.  Substructure solution with SHELXD. , 2002, Acta crystallographica. Section D, Biological crystallography.

[15]  Daniel Zenklusen,et al.  Coupling of Termination, 3′ Processing, and mRNA Export , 2002, Molecular and Cellular Biology.

[16]  D. Luse,et al.  RNA Polymerase II Transcription Complexes May Become Arrested If the Nascent RNA Is Shortened to Less than 50 Nucleotides* , 2002, The Journal of Biological Chemistry.

[17]  O. Schilling,et al.  ElaC Encodes a Novel Binuclear Zinc Phosphodiesterase* , 2002, The Journal of Biological Chemistry.

[18]  A. Marchfelder,et al.  Assigning a function to a conserved group of proteins: the tRNA 3′‐processing enzymes , 2002, The EMBO journal.

[19]  A. Marchfelder,et al.  tRNA 3' end maturation in archaea has eukaryotic features: the RNase Z from Haloferax volcanii. , 2002, Journal of molecular biology.

[20]  Peer Bork,et al.  Systematic identification of novel protein domain families associated with nuclear functions. , 2002, Genome research.

[21]  Gary D Bader,et al.  Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants , 2001, Science.

[22]  M. Curcio,et al.  Multiple regulators of Ty1 transposition in Saccharomyces cerevisiae have conserved roles in genome maintenance. , 2001, Genetics.

[23]  Hiromi Daiyasu,et al.  Expansion of the zinc metallo‐hydrolase family of the β‐lactamase fold , 2001 .

[24]  A. Marchfelder,et al.  The plant tRNA 3' processing enzyme has a broad substrate spectrum. , 2001, Biochemistry.

[25]  Siavash Ghaffari,et al.  A candidate prostate cancer susceptibility gene at chromosome 17p , 2001, Nature Genetics.

[26]  D. Tollervey,et al.  Identification of a Regulated Pathway for Nuclear Pre-mRNA Turnover , 2000, Cell.

[27]  N. Proudfoot,et al.  Transcriptional termination and coupled polyadenylation in vitro , 2000, The EMBO journal.

[28]  Arlen W. Johnson,et al.  Saccharomyces cerevisiae RAI1 (YGL246c) Is Homologous to Human DOM3Z and Encodes a Protein That Binds the Nuclear Exoribonuclease Rat1p , 2000, Molecular and Cellular Biology.

[29]  Miguel Teixeira,et al.  Structure of a dioxygen reduction enzyme from Desulfovibrio gigas , 2000, Nature Structural Biology.

[30]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[31]  C. Moore,et al.  Pta1, a Component of Yeast CF II, Is Required for Both Cleavage and Poly(A) Addition of mRNA Precursor , 1999, Molecular and Cellular Biology.

[32]  A D Cameron,et al.  Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue. , 1999, Structure.

[33]  D. Pascolini,et al.  Active-Site Mutations in the Xrn1p Exoribonuclease of Saccharomyces cerevisiae Reveal a Specific Role in Meiosis , 1999, Molecular and Cellular Biology.

[34]  Anastassis Perrakis,et al.  Automated protein model building combined with iterative structure refinement , 1999, Nature Structural Biology.

[35]  Guoguang Lu FINDNCS: a program to detect non-crystallographic symmetries in protein crystals from heavy-atom sites , 1999 .

[36]  Liang-Hu Qu,et al.  Seven Novel Methylation Guide Small Nucleolar RNAs Are Processed from a Common Polycistronic Transcript by Rat1p and RNase III in Yeast , 1999, Molecular and Cellular Biology.

[37]  Michael R. Green,et al.  Dissecting the Regulatory Circuitry of a Eukaryotic Genome , 1998, Cell.

[38]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[39]  L. Minvielle-Sebastia,et al.  Coupling termination of transcription to messenger RNA maturation in yeast. , 1998, Science.

[40]  E. Petfalski,et al.  Processing of the Precursors to Small Nucleolar RNAs and rRNAs Requires Common Components , 1998, Molecular and Cellular Biology.

[41]  A. Brennicke,et al.  5' end maturation and RNA editing have to precede tRNA 3' processing in plant mitochondria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[42]  N. Pace,et al.  Ribonuclease P: unity and diversity in a tRNA processing ribozyme. , 1998, Annual review of biochemistry.

[43]  P. Brown,et al.  Yeast microarrays for genome wide parallel genetic and gene expression analysis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Nashimoto Distribution of both lengths and 5' terminal nucleotides of mammalian pre-tRNA 3' trailers reflects properties of 3' processing endoribonuclease. , 1997, Nucleic acids research.

[45]  M. Deutscher,et al.  Maturation Pathways for E. coli tRNA Precursors: A Random Multienzyme Process In Vivo , 1996, Cell.

[46]  J. Frère,et al.  The 3‐D structure of a zinc metallo‐beta‐lactamase from Bacillus cereus reveals a new type of protein fold. , 1995 .

[47]  D. Sterner,et al.  The yeast carboxyl-terminal repeat domain kinase CTDK-I is a divergent cyclin-cyclin-dependent kinase complex , 1995, Molecular and cellular biology.

[48]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[49]  C. Cole,et al.  Isolation and characterization of RAT1: an essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA. , 1992, Genes & development.

[50]  J. Manley,et al.  A CCAAT box sequence in the adenovirus major late promoter functions as part of an RNA polymerase II termination signal , 1989, Cell.

[51]  N. Proudfoot How RNA polymerase II terminates transcription in higher eukaryotes. , 1989, Trends in biochemical sciences.

[52]  R. Garber,et al.  Transcription of a cloned bombyx mori trna2 Ala gene: Nucleotide sequence of the tRNA precursor and its processing in vitro , 1979, Cell.

[53]  S. Altman,et al.  In vitro processing of B. mori transfer RNA precursor molecules , 1979, Cell.

[54]  B. Matthews Solvent content of protein crystals. , 1968, Journal of molecular biology.