The rate of meiotic gene conversion varies by sex and age

[1]  A. Gylfason,et al.  Author Correction: The rate of meiotic gene conversion varies by sex and age , 2018, Nature Genetics.

[2]  J. Roach,et al.  Parent-of-origin-specific signatures of de novo mutations , 2016, Nature Genetics.

[3]  A. Auton,et al.  A direct multi-generational estimate of the human mutation rate from autozygous segments seen in thousands of parentally related individuals , 2016, bioRxiv.

[4]  J. Vockley,et al.  New observations on maternal age effect on germline de novo mutations , 2016, Nature Communications.

[5]  John Wakeley,et al.  Leveraging distant relatedness to quantify human mutation and gene conversion rates , 2015, bioRxiv.

[6]  P. Donnelly,et al.  Multicohort analysis of the maternal age effect on recombination , 2015, Nature Communications.

[7]  S. Keeney,et al.  Local and sex-specific biases in crossover vs. noncrossover outcomes at meiotic recombination hot spots in mice , 2015, bioRxiv.

[8]  Kari Stefansson,et al.  Sequence variants from whole genome sequencing a large group of Icelanders , 2015, Scientific Data.

[9]  Bjarni V. Halldórsson,et al.  Large-scale whole-genome sequencing of the Icelandic population , 2015, Nature Genetics.

[10]  Goo Jun,et al.  Non-crossover gene conversions show strong GC bias and unexpected clustering in humans , 2014, bioRxiv.

[11]  Adam Auton,et al.  Escape from crossover interference increases with maternal age , 2014, Nature Communications.

[12]  R. Camerini-Otero,et al.  Recombination initiation maps of individual human genomes , 2014, Science.

[13]  Philipp W. Messer,et al.  Quantification of GC-biased gene conversion in the human genome , 2014, bioRxiv.

[14]  S. Tishkoff,et al.  Biased gene conversion skews allele frequencies in human populations, increasing the disease burden of recessive alleles. , 2014, American journal of human genetics.

[15]  S. Bickel,et al.  Rejuvenation of Meiotic Cohesion in Oocytes during Prophase I Is Required for Chiasma Maintenance and Accurate Chromosome Segregation , 2014, PLoS genetics.

[16]  J. Haber,et al.  Frequent Interchromosomal Template Switches during Gene Conversion in S. cerevisiae. , 2014, Molecular cell.

[17]  S. Keeney,et al.  Mouse tetrad analysis provides insights into recombination mechanisms and hotspot evolutionary dynamics , 2014, Nature Genetics.

[18]  A. Jeffreys,et al.  Transmission Distortion Affecting Human Noncrossover but Not Crossover Recombination: A Hidden Source of Meiotic Drive , 2014, PLoS genetics.

[19]  D. Gudbjartsson,et al.  Common and low-frequency variants associated with genome-wide recombination rate , 2013, Nature Genetics.

[20]  S. Keeney,et al.  Mechanism and regulation of meiotic recombination initiation. , 2014, Cold Spring Harbor perspectives in biology.

[21]  G. Bazykin,et al.  SHORT INDELS ARE SUBJECT TO INSERTION‐BIASED GENE CONVERSION , 2013, Evolution; international journal of organic evolution.

[22]  B. Rannala,et al.  Meiotic gene-conversion rate and tract length variation in the human genome. , 2013, European journal of human genetics : EJHG.

[23]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[24]  S. Steinberg,et al.  Rate of de novo mutations and the importance of father’s age to disease risk , 2012, Nature.

[25]  Patricia A. Hunt,et al.  Human aneuploidy: mechanisms and new insights into an age-old problem , 2012, Nature Reviews Genetics.

[26]  A. Kondrashov,et al.  A Strong Deletion Bias in Nonallelic Gene Conversion , 2012, PLoS genetics.

[27]  B. Dujon,et al.  Genome-Wide Analysis of Heteroduplex DNA in Mismatch Repair–Deficient Yeast Cells Reveals Novel Properties of Meiotic Recombination Pathways , 2011, PLoS genetics.

[28]  A. Gylfason,et al.  Fine-scale recombination rate differences between sexes, populations and individuals , 2010, Nature.

[29]  G. Coop,et al.  PRDM9 Is a Major Determinant of Meiotic Recombination Hotspots in Humans and Mice , 2010, Science.

[30]  John C. Schimenti,et al.  Genetics of mammalian meiosis: regulation, dynamics and impact on fertility , 2010, Nature Reviews Genetics.

[31]  Laurent Duret,et al.  Biased gene conversion and the evolution of mammalian genomic landscapes. , 2009, Annual review of genomics and human genetics.

[32]  F. Marchetti,et al.  Heterozygosity for a Bub1 mutation causes female-specific germ cell aneuploidy in mice , 2009, Proceedings of the National Academy of Sciences.

[33]  S. Bickel,et al.  Aging Predisposes Oocytes to Meiotic Nondisjunction When the Cohesin Subunit SMC1 Is Reduced , 2008, PLoS genetics.

[34]  Peter Donnelly,et al.  A common sequence motif associated with recombination hot spots and genome instability in humans , 2008, Nature Genetics.

[35]  A. Jeffreys,et al.  Sperm cross-over activity in regions of the human genome showing extreme breakdown of marker association , 2008, Proceedings of the National Academy of Sciences.

[36]  Laurent Duret,et al.  The Impact of Recombination on Nucleotide Substitutions in the Human Genome , 2008, PLoS genetics.

[37]  D. K. Bishop,et al.  Synthesis-Dependent Strand Annealing in Meiosis , 2007, PLoS biology.

[38]  Zhaohui S. Qin,et al.  A second generation human haplotype map of over 3.1 million SNPs , 2007, Nature.

[39]  Lon R Cardon,et al.  Evaluating coverage of genome-wide association studies , 2006, Nature Genetics.

[40]  C. Grey,et al.  Crossover and noncrossover pathways in mouse meiosis. , 2005, Molecular cell.

[41]  E. Revenkova,et al.  SMC1β-deficient female mice provide evidence that cohesins are a missing link in age-related nondisjunction , 2005, Nature Genetics.

[42]  D. Gudbjartsson,et al.  Recombination rate and reproductive success in humans , 2004, Nature Genetics.

[43]  A. Jeffreys,et al.  Intense and highly localized gene conversion activity in human meiotic crossover hot spots , 2004, Nature Genetics.

[44]  D. Gudbjartsson,et al.  A high-resolution recombination map of the human genome , 2002, Nature Genetics.

[45]  L. Duret,et al.  GC-content evolution in mammalian genomes: the biased gene conversion hypothesis. , 2001, Genetics.

[46]  T. Allers,et al.  Differential Timing and Control of Noncrossover and Crossover Recombination during Meiosis , 2001, Cell.

[47]  C. Sapienza,et al.  Recombination is proportional to the number of chromosome arms in mammals , 2001, Mammalian Genome.

[48]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[49]  T. Laycock,et al.  The Main Text , 1995, Medical History.

[50]  R. Tibshirani,et al.  An Introduction to the Bootstrap , 1995 .

[51]  J. Szostak,et al.  Double-strand breaks at an initiation site for meiotic gene conversion , 1989, Nature.

[52]  Jack W. Szostak,et al.  The double-strand-break repair model for recombination , 1983, Cell.