Depth

Depth is the feeling of remoteness, or separateness, that accompanies awareness in human modalities like vision and audition. In specific cases depths can be graded on an ordinal scale, or even measured quantitatively on an interval scale. In the case of pictorial vision this is complicated by the fact that human observers often appear to apply mental transformations that involve depths in distinct visual directions. This implies that a comparison of empirically determined depths between observers involves pictorial space as an integral entity, whereas comparing pictorial depths as such is meaningless. We describe the formal structure of pictorial space purely in the phenomenological domain, without taking recourse to the theories of optics which properly apply to physical space—a distinct ontological domain. We introduce a number of general ways to design and implement methods of geodesy in pictorial space, and discuss some basic problems associated with such measurements. We deal mainly with conceptual issues.

[1]  J. Koenderink,et al.  Surface perception in pictures , 1992, Perception & psychophysics.

[2]  T. Nagel Mortal Questions: What is it like to be a bat? , 2012 .

[3]  Johan Wagemans,et al.  Space perception in pictures , 2011, Electronic Imaging.

[4]  J. Wagemans,et al.  From images to objects: Global and local completions of self-occluded parts , 1999 .

[5]  Jan J. Koenderink,et al.  Pappus in optical space , 2002, Perception & psychophysics.

[6]  Andrea J. van Doorn,et al.  Exocentric pointing in depth , 2008, Vision Research.

[7]  Felix . Klein,et al.  Vergleichende Betrachtungen über neuere geometrische Forschungen , 1893 .

[8]  Andrea J. van Doorn,et al.  Relief: pictorial and otherwise , 1995, Image Vis. Comput..

[9]  S. Shelah The depth of ultraproducts of Boolean algebras , 2004, math/0406531.

[10]  David J. Kriegman,et al.  The Bas-Relief Ambiguity , 2004, International Journal of Computer Vision.

[11]  Jan J. Koenderink,et al.  Compression of visual space in natural scenes and in their photographic counterparts , 1999, Perception & psychophysics.

[12]  J T Todd,et al.  Ambiguity and the ‘Mental Eye’ in Pictorial Relief , 2001, Perception.

[13]  I. M. I︠A︡glom A simple non-Euclidean geometry and its physical basis : an elementary account of Galilean geometry and the Galilean principle of relativity , 1979 .

[14]  Astrid M L Kappers,et al.  Large-Scale Visual Frontoparallels under Full-Cue Conditions , 2002, Perception.

[15]  A. C. Sewter Baroque and Rococo art , 1972 .

[16]  Jan J. Koenderink,et al.  Wide distribution of external local sign in the normal population , 2009, Psychological research.

[17]  J. Koenderink,et al.  The Shape of Smooth Objects and the Way Contours End , 1982, Perception.

[18]  J. Koenderink,et al.  The Structure of Relief , 1998 .

[19]  J J Koenderink,et al.  Direct Measurement of the Curvature of Visual Space , 2000, Perception.

[20]  J. Koenderink,et al.  Exocentric pointing to opposite targets. , 2003, Acta psychologica.

[21]  J. Koenderink,et al.  Pictorial surface attitude and local depth comparisons , 1996, Perception & psychophysics.

[22]  Andrea J. van Doorn,et al.  Surface shape and curvature scales , 1992, Image Vis. Comput..

[23]  R. Hetherington The Perception of the Visual World , 1952 .

[24]  Andrea J. van Doorn,et al.  The Structure of Visual Spaces , 2008, Journal of Mathematical Imaging and Vision.

[25]  J. Koenderink,et al.  Depth Relief , 1995, Perception.

[26]  安藤 広志,et al.  20世紀の名著名論:David Marr:Vision:a Computational Investigation into the Human Representation and Processing of Visual Information , 2005 .

[27]  Hans Sachs,et al.  Isotrope Geometrie des Raumes , 1990 .

[28]  Johan Wagemans,et al.  Measuring 3D point configurations in pictorial space , 2011, i-Perception.