A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis

[1]  Gerhard A. Holzapfel,et al.  A rate-independent elastoplastic constitutive model for biological fiber-reinforced composites at finite strains: continuum basis, algorithmic formulation and finite element implementation , 2002 .

[2]  Peter Regitnig,et al.  Mechanics of the human femoral adventitia including the high-pressure response. , 2002, American journal of physiology. Heart and circulatory physiology.

[3]  Gerhard A. Holzapfel,et al.  A viscoelastic model for fiber-reinforced composites at finite strains: Continuum basis, computational aspects and applications , 2001 .

[4]  Phenomenological and Structural Aspects of the Mechanical Response of Arteries , 2000, Mechanics in Biology.

[5]  R. Ogden,et al.  A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models , 2000 .

[6]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[7]  P B Dobrin,et al.  Distribution of lamellar deformations: implications for properties of the arterial media. , 1999, Hypertension.

[8]  P. Canham,et al.  Collagen organization in the branching region of human brain arteries. , 1998, Stroke.

[9]  M. Sacks,et al.  A method to quantify the fiber kinematics of planar tissues under biaxial stretch. , 1997, Journal of biomechanics.

[10]  C. Miehe,et al.  Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity , 1996 .

[11]  Gerhard A. Holzapfel,et al.  Entropy elasticity of isotropic rubber-like solids at finite strains , 1996 .

[12]  Hiroyuki Abe,et al.  Data Book on Mechanical Properties of Living Cells, Tissues, and Organs , 1996 .

[13]  阿部 博之,et al.  Data book on mechanical properties of living cells, tissues, and organs , 1996 .

[14]  Y C Fung,et al.  Bending of blood vessel wall: stress-strain laws of the intima-media and adventitial layers. , 1995, Journal of biomechanical engineering.

[15]  J D Humphrey,et al.  Mechanics of the arterial wall: review and directions. , 1995, Critical reviews in biomedical engineering.

[16]  J. Weiss,et al.  Finite element implementation of incompressible, transversely isotropic hyperelasticity , 1996 .

[17]  K Hayashi,et al.  Experimental approaches on measuring the mechanical properties and constitutive laws of arterial walls. , 1993, Journal of biomechanical engineering.

[18]  I. Yannas,et al.  Scattering of light from histologic sections: a new method for the analysis of connective tissue. , 1993, The Journal of investigative dermatology.

[19]  J. C. Simo,et al.  Associated coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation , 1992 .

[20]  J. C. Simo,et al.  Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms , 1991 .

[21]  J. Mcelhaney,et al.  A piece-wise non-linear elastic stress expression of human and pig coronary arteries tested in vitro. , 1991, Journal of biomechanics.

[22]  J. C. Rice,et al.  On numerically accurate finite element solutions in the fully plastic range , 1990 .

[23]  F H Silver,et al.  Mechanical properties of the aorta: a review. , 1989, Critical reviews in biomedical engineering.

[24]  J. C. Simo,et al.  On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects , 1987 .

[25]  K. Takamizawa,et al.  Strain energy density function and uniform strain hypothesis for arterial mechanics. , 1987, Journal of biomechanics.

[26]  Y. Fung,et al.  Residual Stress in Arteries , 1986 .

[27]  Savio Lau-Yuen Woo,et al.  Frontiers in Biomechanics , 1986, Springer New York.

[28]  J. C. Simo,et al.  Variational and projection methods for the volume constraint in finite deformation elasto-plasticity , 1985 .

[29]  S. Glagov,et al.  Transmural Organization of the Arterial Media: The Lamellar Unit Revisited , 1985, Arteriosclerosis.

[30]  A.J.M. Spencer,et al.  Constitutive Theory for Strongly Anisotropic Solids , 1984 .

[31]  Zvi Hashin,et al.  Continuum Theory of the Mechanics of Fibre-Reinforced Composites , 1984 .

[32]  G. Langewouters,et al.  The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. , 1984, Journal of biomechanics.

[33]  C. William Hall,et al.  Biomedical Engineering II Recent Developments , 1983 .

[34]  M. Todd,et al.  The Dimensional Characteristics of Smooth Muscle in Rat Blood Vessels: A Computer‐Assisted Analysis , 1983, Circulation research.

[35]  R. N. Vaishnav,et al.  ESTIMATION OF RESIDUAL STRAINS IN AORTIC SEGMENTS , 1983 .

[36]  M W Peters,et al.  Circumferential alignment of muscle cells in the tunica media of the human brain artery. , 1983, Blood vessels.

[37]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[38]  Y. Fung,et al.  Biomechanics: Mechanical Properties of Living Tissues , 1981 .

[39]  S L Woo,et al.  Quasi-linear viscoelastic properties of normal articular cartilage. , 1980, Journal of biomechanical engineering.

[40]  Yuan-Cheng Fung On Pseudo-elasticity of Living Tissues , 1980 .

[41]  Johannes A. G. Rhodin,et al.  Architecture of the Vessel Wall , 1980 .

[42]  B. S. Gow,et al.  The Elasticity of Canine and Human Coronary Arteries with Reference to Postmortem Changes , 1979, Circulation research.

[43]  Y. Fung,et al.  Pseudoelasticity of arteries and the choice of its mathematical expression. , 1979, The American journal of physiology.

[44]  P. Canham,et al.  Orientation of nuclei as indicators of smooth muscle cell alignment in the cerebral artery. , 1979, Blood vessels.

[45]  Ray W. Ogden,et al.  Nearly isochoric elastic deformations: Application to rubberlike solids , 1978 .

[46]  P. Canham Orientation of cerebral vascular smooth muscle, mathematically modelled. , 1977, Journal of biomechanics.

[47]  M. R. Roach,et al.  A scanning electron microscope study of human cerebral arteries. , 1975, Canadian journal of physiology and pharmacology.

[48]  Y C Fung,et al.  Elastic and inelastic properties of the canine aorta and their variation along the aortic tree. , 1974, Journal of biomechanics.

[49]  K. Valanis,et al.  Irreversible Thermodynamics of Continuous Media: Internal Variable Theory , 1973 .

[50]  M. Anliker,et al.  Biomechanics Its Foundations And Objectives , 1972 .

[51]  D. J. Patel,et al.  The Elastic Symmetry of Arterial Segments in Dogs , 1969, Circulation research.

[52]  A. Somlyo,et al.  VASCULAR SMOOTH MUSCLE , 1968 .

[53]  R N Vaishnav,et al.  Compressibility of the Arterial Wall , 1968, Circulation research.

[54]  A V Somlyo,et al.  Vascular smooth muscle. I. Normal structure, pathology, biochemistry, and biophysics. , 1968, Pharmacological reviews.

[55]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[56]  J. Rhodin,et al.  The ultrastructure of mammalian arterioles and precapillary sphincters. , 1967, Journal of ultrastructure research.

[57]  S. Glagov,et al.  A Lamellar Unit of Aortic Medial Structure and Function in Mammals , 1967, Circulation research.

[58]  M. G. Taylor,et al.  Alterations with Age in the Viscoelastic Properties of Human Arterial Walls , 1966, Circulation research.

[59]  S. Glagov,et al.  Structural Basis for the Static Mechanical Properties of the Aortic Media , 1964, Circulation research.

[60]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[61]  Rhodin Ja Fine structure of vascular walls in mammals with special reference to smooth muscle component. , 1962 .

[62]  J. Rhodin Fine structure of vascular walls in mammals with special reference to smooth muscle component. , 1962, Physiological reviews. Supplement.

[63]  D. Bergel,et al.  The dynamic elastic properties of the arterial wall , 1961, The Journal of physiology.

[64]  P. Flory,et al.  Thermodynamic relations for high elastic materials , 1961 .

[65]  D. Bergel The static elastic properties of the arterial wall , 1961, The Journal of physiology.

[66]  F. Plum Handbook of Physiology. , 1960 .

[67]  A. C. Burton,et al.  The reason for the shape of the distensibility curves of arteries. , 1957, Canadian journal of biochemistry and physiology.

[68]  Kenneth C. Strong,et al.  A study of the structure of the media of the distributing arteries by the method of microdissection , 1938 .

[69]  C. Roy,et al.  The Elastic Properties of the Arterial Wall , 1881, The Journal of physiology.

[70]  L. Ranvier,et al.  Leçons d'anatomie générale sur le système musculaire , 1880 .

[71]  M. Wertheim Mémoire sur l'élasticité et la cohésion des principaux tissus du corps humain , 1847 .