Ultrathin Metal films for Transparent Electrodes of Flexible Optoelectronic Devices

The need for the development of transparent conductive electrodes (TCEs) supported on flexible polymer substrates has explosively increased in response to flexible polymer-based photovoltaic and display technologies; these TCEs replace conventional indium tin oxide (ITO) that exhibits poor performance on heat-sensitive polymers. An efficient, flexible TCE is required to exhibit high electrical conductance and high optical transmittance, as well as excellent mechanical flexibility and long-term stability, simultaneously. Recent advances in technologies utilizing an ultrathin noble-metal film in a dielectric/metal/dielectric structure, or its derivatives, have attracted attention as promising alternatives that can satisfy the requirements of flexible TCEs. This review will survey the background knowledge and recent updates of synthetic strategies and design rules toward highly efficient, flexible TCEs based on ultrathin metal films, with a special focus on the principal features and available methodologies involved in the fabrication of highly transparent, conductive, ultrathin noble-metal films. This survey will also cover the practical applications of TCEs to flexible organic solar cells and light-emitting diodes.

[1]  Javier Aizpurua,et al.  Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. , 2008, ACS nano.

[2]  Satoshi Ishii,et al.  Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer. , 2010, Optics express.

[3]  Terry Alford,et al.  Agglomeration and percolation conductivity , 2001 .

[4]  Y. Shan,et al.  Electronic Conductivity and Percolation Theory in Aggregated Films , 1976 .

[5]  Karl Leo,et al.  Improvement of Transparent Metal Top Electrodes for Organic Solar Cells by Introducing a High Surface Energy Seed Layer , 2013 .

[6]  C. Campbell,et al.  Cu films on a Zn-terminated ZnO(0001) surface: structure and electronic properties , 1998 .

[7]  J. Xue,et al.  Flexible organic solar cells using an oxide/metal/oxide trilayer as transparent electrode , 2012 .

[8]  R. Behm,et al.  Nucleation and growth of thin metal films on clean and modified metal substrates studied by scanning tunneling microscopy , 1992 .

[9]  W. Sim,et al.  Atomic imaging of the transition between oxygen chemisorption and oxide film growth on Ag{1 1 1} , 2000 .

[10]  Jow-Lay Huang,et al.  Investigation of conductive and transparent Al-doped ZnO/Ag/Al-doped ZnO multilayer coatings by electron beam evaporation , 2008 .

[11]  Steven M. George,et al.  Gas diffusion barriers on polymers using Al2O3 atomic layer deposition , 2006 .

[12]  Cheng Zhang,et al.  An Ultrathin, Smooth, and Low‐Loss Al‐Doped Ag Film and Its Application as a Transparent Electrode in Organic Photovoltaics , 2014, Advanced materials.

[13]  Han‐Ki Kim,et al.  Mechanical integrity of flexible InZnO/Ag/InZnO multilayer electrodes grown by continuous roll-to-roll sputtering , 2011 .

[14]  T. Alford,et al.  Improved surface morphology and texture of Ag films on indium tin oxide via Cu additions , 2007 .

[15]  A. Hassanzadeh,et al.  Influence of Ag thickness on electrical, optical and structural properties of nanocrystalline MoO3/Ag/ITO multilayer for optoelectronic applications , 2012 .

[16]  S. Park,et al.  Mechanical Stability of Externally Deformed Indium–Tin–Oxide Films on Polymer Substrates , 2003 .

[17]  Jang‐Joo Kim,et al.  Highly flexible, transparent, and low resistance indium zinc oxide Ag indium zinc oxide multilayer anode on polyethylene terephthalate substrate for flexible organic light light-emitting diodes , 2008 .

[18]  Weiqiang Chen,et al.  Ultrathin, ultrasmooth and low-loss silver films via wetting and annealing , 2010 .

[19]  David M. Fryauf,et al.  Phenomenological Model of the Growth of Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[20]  N. Kamiya,et al.  Thermal fatigue life of glass subjected to air blast quenching , 1989 .

[21]  Malte C. Gather,et al.  Highly Efficient Color Stable Inverted White Top‐Emitting OLEDs with Ultra‐Thin Wetting Layer Top Electrodes , 2013 .

[22]  Sun-Hye Song,et al.  MgxZn1-xO/Ag/MgxZn1-xO Multilayers As High-Performance Transparent Conductive Electrodes. , 2016, ACS applied materials & interfaces.

[23]  Guichang Wang,et al.  Cluster and periodic DFT calculations: the adsorption of atomic nitrogen on M(111) (M = Cu, Ag, Au) surfaces. , 2005, The journal of physical chemistry. B.

[24]  H. Gong,et al.  Conductivity mechanism of nanosized silver layer embedded in indium zinc oxide , 2012 .

[25]  Valerio Pruneri,et al.  Ultrastable and atomically smooth ultrathin silver films grown on a copper seed layer. , 2013, ACS applied materials & interfaces.

[26]  Rosenfeld,et al.  Layer-by-layer growth of Ag on Ag(111) induced by enhanced nucleation: A model study for surfactant-mediated growth. , 1993, Physical review letters.

[27]  N. Schiller,et al.  Optical properties of metal based transparent electrodes on polymer films , 2008 .

[28]  Anja Haase,et al.  Optical and structural characterization of silver islands films on glass substrates , 2008 .

[29]  Jin-A Jeong,et al.  Low resistance and highly transparent ITO–Ag–ITO multilayer electrode using surface plasmon resonance of Ag layer for bulk-heterojunction organic solar cells , 2009 .

[30]  J. Piel,et al.  High quality transparent conductive electrodes in organic photovoltaic devices , 2008 .

[31]  T. Szoplik,et al.  Ultrasmooth metal nanolayers for plasmonic applications: surface roughness and specific resistivity. , 2014, Applied optics.

[32]  Robert Schlögl,et al.  Atomic oxygen species on silver: Photoelectron spectroscopy and x-ray absorption studies , 2003 .

[33]  Sei‐Yong Kim,et al.  Transparent Ultrathin Oxygen‐Doped Silver Electrodes for Flexible Organic Solar Cells , 2014 .

[34]  T. Alford,et al.  High quality transparent TiO2/Ag/TiO2 composite electrode films deposited on flexible substrate at room temperature by sputtering , 2013 .

[35]  Yan-Qing Li,et al.  Microcavity-Free Broadband Light Outcoupling Enhancement in Flexible Organic Light-Emitting Diodes with Nanostructured Transparent Metal-Dielectric Composite Electrodes. , 2016, ACS nano.

[36]  T. Alford,et al.  Effect of Ag thickness on electrical transport and optical properties of indium tin oxide–Ag–indium tin oxide multilayers , 2009 .

[37]  Reuter,et al.  Local dimer exchange in surfactant-mediated epitaxial growth. , 1992, Physical review letters.

[38]  Andrea Alù,et al.  Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver , 2013, Advanced materials.

[39]  I. Mertig,et al.  Mobility of conduction electrons in ultrathin Fe and Cu films on Si(111) , 2007 .

[40]  R. Hatton,et al.  Ultrathin Transparent Au Electrodes for Organic Photovoltaics Fabricated Using a Mixed Mono‐Molecular Nucleation Layer , 2011 .

[41]  D. Goodman,et al.  Scanning tunneling microscopy studies of metal clusters supported on TiO2 (110): Morphology and electronic structure , 1998 .

[42]  Liang Fang,et al.  Transparent flexible resistive random access memory fabricated at room temperature , 2009 .

[43]  Yun Cheol Han,et al.  Highly Transparent and Flexible Organic Light‐Emitting Diodes with Structure Optimized for Anode/Cathode Multilayer Electrodes , 2015 .

[44]  Alex K.-Y. Jen,et al.  A Review on the Development of the Inverted Polymer Solar Cell Architecture , 2010 .

[45]  John Lewis Material challenge for flexible organic devices , 2006 .

[46]  G. Kästle,et al.  Growth of thin, flat, epitaxial (1 1 1) oriented gold films on c-cut sapphire , 2002 .

[47]  R. Behm,et al.  Homoepitaxial growth on Ni(100) and its modification by a preadsorbed oxygen adlayer , 1993 .

[48]  M. Henzler,et al.  Nonmetallic conductivity of epitaxial monolayers of Ag at low temperatures , 1998 .

[49]  Stéphanie P. Lacour,et al.  Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates , 2009 .

[50]  Y. Leterrier Durability of nanosized oxygen-barrier coatings on polymers , 2003 .

[51]  Pan,et al.  Growth mode of ultrathin copper overlayers on TiO2(110). , 1993, Physical review. B, Condensed matter.

[52]  C. Guillén,et al.  TCO/metal/TCO structures for energy and flexible electronics , 2011 .

[53]  Do-Wan Kim,et al.  The Study of Transmittance and Conductivity by Top ZnO Thickness in ZnO/Ag/ZnO Transparent Conducting Oxide Films , 2011 .

[54]  I. Beinik,et al.  Enhanced wetting of Cu on ZnO by migration of subsurface oxygen vacancies , 2015, Nature Communications.

[55]  Kern,et al.  Interlayer mass transport in homoepitaxial and heteroepitaxial metal growth. , 1995, Physical review letters.

[56]  Yves Leterrier,et al.  Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays , 2004 .

[57]  T. W. Noh,et al.  Multiple conducting carriers generated in LaAlO3/SrTiO3 heterostructures , 2009 .

[58]  Suren A. Gevorgyan,et al.  Stability of Polymer Solar Cells , 2012, Advanced materials.

[59]  J. Teng,et al.  Ultrasmooth silver thin film on PEDOT:PSS nucleation layer for extended surface plasmon propagation. , 2012, ACS applied materials & interfaces.

[60]  J. Kollár,et al.  The surface energy of metals , 1998 .

[61]  C. Campbell,et al.  Metal adsorption and adhesion energies on MgO(100). , 2002, Journal of the American Chemical Society.

[62]  C. Guillén,et al.  ITO/metal/ITO multilayer structures based on Ag and Cu metal films for high-performance transparent electrodes , 2008 .

[63]  Liangbing Hu,et al.  Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures , 2011, Advanced materials.

[64]  L. Guo,et al.  Ultrasmooth and thermally stable silver-based thin films with subnanometer roughness by aluminum doping. , 2014, ACS nano.

[65]  K. Lehtinen,et al.  Effect of coalescence energy release on the temporal shape evolution of nanoparticles , 2001 .

[66]  V. Pruneri,et al.  Highly Flexible Transparent Electrodes Containing Ultrathin Silver for Efficient Polymer Solar Cells , 2015 .

[67]  E. Ando,et al.  Moisture resistance of the low-emissivity coatings with a layer structure of Al-doped ZnO/Ag/Al-doped ZnO , 2001 .

[68]  R. Hatton,et al.  An Indium‐Free Low Work Function Window Electrode for Organic Photovoltaics Which Improves with In‐Situ Oxidation , 2013, Advanced materials.

[69]  T. Alford,et al.  Metallic conductivity and the role of copper in ZnO/Cu/ZnO thin films for flexible electronics , 2009 .

[70]  E Erik Langereis,et al.  Plasma-assisted atomic layer deposition of Al2O3 moisture permeation barriers on polymers , 2006 .

[71]  Yen-Sheng Lin,et al.  Study of optoelectronics and microstructures on the AZO/nano-layer metals/AZO sandwich structures , 2013, Journal of Materials Science: Materials in Electronics.

[72]  M. Girtan Comparison of ITO/metal/ITO and ZnO/metal/ZnO characteristics as transparent electrodes for third generation solar cells , 2012 .

[73]  C. Goss,et al.  Application of (3-mercaptopropyl)trimethoxysilane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates , 1991 .

[74]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[75]  S. C. Parker,et al.  Island growth kinetics during vapor deposition of Cu onto the Zn-terminated ZnO(0001) surface , 1999 .

[76]  Wendy D. Bennett,et al.  Organic light-emitting devices with extended operating lifetimes on plastic substrates , 2002 .

[77]  Submonolayer growth with repulsive impurities: Island density scaling with anomalous diffusion. , 1995, Physical review letters.

[78]  M. Gather,et al.  Eliminating Micro‐Cavity Effects in White Top‐Emitting OLEDs by Ultra‐Thin Metallic Top Electrodes , 2013 .

[79]  E. Bauer,et al.  Recent advances in epitaxy , 1972 .

[80]  C. Granqvist,et al.  TiO2/Au/TiO2 multilayer thin films: Novel metal-based transparent conductors for electrochromic devices , 2009 .

[81]  G. Leftheriotis,et al.  Combined electrochromic-transparent conducting coatings consisting of noble metal, dielectric and WO3 multilayers , 2013 .

[82]  J. Meiss,et al.  Oxide Sandwiched Metal Thin‐Film Electrodes for Long‐Term Stable Organic Solar Cells , 2012 .

[83]  T. Madey,et al.  Ultrathin metal film growth on TiO2(110): an overview , 1995 .

[84]  Norbert Kaiser,et al.  Review of the fundamentals of thin-film growth. , 2002, Applied optics.

[85]  C. Jenks,et al.  Stranski-Krastanov-like growth of an Ag film on a metallic glass , 2009 .

[86]  Qiang Fu,et al.  Interaction of nanostructured metal overlayers with oxide surfaces , 2007 .

[87]  A. El Hajj,et al.  Optimization of ZnO/Ag/ZnO multilayer electrodes obtained by Ion Beam Sputtering for optoelectronic devices , 2012 .

[88]  Y. Jeong,et al.  Investigation of brittle failure in transparent conductive oxide and permeation barrier oxide multilayers on flexible polymers , 2010 .

[89]  Sang‐Hyun Oh,et al.  Single‐Crystalline Silver Films for Plasmonics , 2012, Advanced materials.

[90]  K. F. Wojciechowski Surface energy of metals: theory and experiment , 1999 .

[91]  Jae-Wook Kang,et al.  Preparation of flexible organic solar cells with highly conductive and transparent metal-oxide multilayer electrodes based on silver oxide. , 2013, ACS applied materials & interfaces.

[92]  T. Bae,et al.  Adhesive and Structural Failures of Oxide Coatings on Plasma‐Treated Polymers , 2011 .

[93]  G. Radnóczi,et al.  Characterization of ZnO:Al/Au/ZnO:Al trilayers for high performance transparent conducting electrodes , 2010 .

[94]  J. P. Andrés,et al.  Oxygen-assisted control of surface morphology in nonepitaxial sputter growth of Ag , 2006 .

[95]  S. Asher,et al.  Circular dichroism and ultraviolet resonance Raman indicate little Arg-Glu side chain α-helix peptide stabilization. , 2011, The journal of physical chemistry. B.

[96]  G. A. Somorjai,et al.  THE SURFACE COMPOSITION OF BINARY SYSTEMS. PREDICTION OF SURFACE PHASE DIAGRAMS OF SOLID SOLUTIONS , 1975 .

[97]  Kwanghee Lee,et al.  Polymer-metal hybrid transparent electrodes for flexible electronics , 2015, Nature Communications.

[98]  W. A. Miller,et al.  Surface free energies of solid metals: Estimation from liquid surface tension measurements , 1977 .

[99]  Won Joon Cho,et al.  Ultrahigh-density array of silver nanoclusters for SERS substrate with high sensitivity and excellent reproducibility. , 2012, ACS nano.

[100]  T. C. Zhang,et al.  Influence of growth temperature on formation of continuous Ag thin film on ZnO surface by ultra-high vacuum deposition , 2009 .

[101]  C. Villeneuve,et al.  E-beam deposited ultra-smooth silver thin film on glass with different nucleation layers: An optimization study for OLED micro-cavity application , 2010 .

[102]  D. Steigerwald,et al.  The role of adsorbed gases in metal on metal epitaxy , 1989 .

[103]  Han‐Ki Kim,et al.  Room temperature flexible and transparent ITO/Ag/ITO electrode grown on flexile PES substrate by continuous roll-to-roll sputtering for flexible organic photovoltaics , 2009 .

[104]  C. Campbell,et al.  Ceria Maintains Smaller Metal Catalyst Particles by Strong Metal-Support Bonding , 2010, Science.

[105]  J. Bernède,et al.  Toward indium‐free optoelectronic devices: Dielectric/metal/dielectric alternative transparent conductive electrode in organic photovoltaic cells , 2013 .

[106]  N. D. Theodore,et al.  Improved conductivity and mechanism of carrier transport in zinc oxide with embedded silver layer , 2008 .

[107]  Han‐Ki Kim,et al.  Thin Ag Layer Inserted GZO Multilayer Grown by Roll-to-Roll Sputtering for Flexible and Transparent Conducting Electrodes , 2010 .

[108]  Annealing effect of ZnO/Au/ZnO transparent conductive films , 2012 .

[109]  R. Behm,et al.  Sb-enhanced nucleation in the homoepitaxial growth of Ag(111) , 1998 .

[110]  A. Jen,et al.  Interfacial Engineering of Ultrathin Metal Film Transparent Electrode for Flexible Organic Photovoltaic Cells , 2014, Advanced materials.

[111]  M. Knupfer,et al.  Plasmonic excitations in ZnO/Ag/ZnO multilayer systems: Insight into interface and bulk electronic properties , 2011 .

[112]  Structure and electrical properties of indium-germanium interfaces. , 1989, Physical review. B, Condensed matter.

[113]  J. Whitten,et al.  Theory of chemisorption and reactions on metal surfaces , 1996 .

[114]  M. Stiles,et al.  Oxygen as a Surfactant in the Growth of Giant Magnetoresistance Spin Valves , 1997 .

[115]  T. Riedl,et al.  Highly Robust Transparent and Conductive Gas Diffusion Barriers Based on Tin Oxide , 2015, Advanced materials.

[116]  Han‐Ki Kim,et al.  Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics , 2009 .

[117]  I. Crupi,et al.  Optimization of ZnO:Al/Ag/ZnO:Al structures for ultra-thin high-performance transparent conductive electrodes , 2012 .

[118]  T. Alford,et al.  ZnO–Ag–MoO3 transparent composite electrode for ITO-free, PEDOT: PSS-free bulk-heterojunction organic solar cells , 2013 .

[119]  A. Abdallah,et al.  Buckle initiation and delamination of patterned ITO layers on a polymer substrate , 2011 .

[120]  Yang Xu,et al.  Semitransparent inverted polymer solar cells using MoO3/Ag/WO3 as highly transparent anodes , 2011 .

[121]  G. Crawford,et al.  Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates , 2000 .

[122]  Terry Alford,et al.  Improvement of the thermal stability of silver metallization , 2003 .

[123]  Meyer,et al.  Surfactant-induced layer-by-layer growth of Ag on Ag(111): Origins and side effects. , 1994, Physical review letters.

[124]  Fathi Aqra,et al.  Surface energies of metals in both liquid and solid states , 2011 .

[125]  Hongzheng Chen,et al.  Toward Highly Efficient Large‐Area ITO‐Free Organic Solar Cells with a Conductance‐Gradient Transparent Electrode , 2015, Advanced materials.

[126]  R. Behm,et al.  A comparative STM study of the growth of thin Au films on clean and oxygen-precovered Ru(0001) surfaces , 1992 .

[127]  T. Madey,et al.  Ultrathin metal films on a metal oxide surface: Growth of Au on TiO 2 (110) , 1997 .

[128]  Charles T. Campbell,et al.  Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties , 1997 .

[129]  E. Sacher,et al.  Surface diffusion and coalescence of mobile metal nanoparticles. , 2005, The journal of physical chemistry. B.

[130]  R. Steiner,et al.  Use of tin as a surfactant material for the growth of thin silver films on silicon oxide , 2008 .

[131]  J. Bernède,et al.  Dielectric/metal/dielectric structures using copper as metal and MoO3 as dielectric for use as transparent electrode , 2012 .

[132]  Zhang,et al.  Atomic-scale mechanisms for surfactant-mediated layer-by-layer growth in homoepitaxy. , 1994, Physical review letters.

[133]  Jong-Lam Lee,et al.  Transparent electrode of nanoscale metal film for optoelectronic devices , 2015 .

[134]  Andrei Lavrinenko,et al.  Ultrathin, ultrasmooth gold layer on dielectrics without the use of additional metallic adhesion layers. , 2015, ACS applied materials & interfaces.

[135]  S. Heun,et al.  Conductance of Ag on Si(111) : a two-dimensional percolation problem , 1993 .

[136]  N. Zhang,et al.  High-performance NiO/Ag/NiO transparent electrodes for flexible organic photovoltaic cells. , 2014, ACS applied materials & interfaces.

[137]  L. Jeurgens,et al.  Effect of adatom surface diffusivity on microstructure and intrinsic stress evolutions during Ag film growth , 2012 .

[138]  R. M. Nieminen,et al.  Electronic structure of rectangular quantum dots , 2003 .

[139]  Sungjun Kim,et al.  Design of dielectric/metal/dielectric transparent electrodes for flexible electronics , 2012 .

[140]  U. Köhler,et al.  Small Cu-clusters on ZnO(0 0 0 1) Zn: Nucleation and annealing behavior , 2007 .

[141]  T. Riedl,et al.  Metal-nanostructures – a modern and powerful platform to create transparent electrodes for thin-film photovoltaics , 2016 .

[142]  E. Seebauer,et al.  Estimating surface diffusion coefficients , 1995 .

[143]  C. Granqvist Electrochromics for smart windows: Oxide-based thin films and devices , 2014 .

[144]  T. Szoplik,et al.  Optimum deposition conditions of ultrasmooth silver nanolayers , 2014, Nanoscale Research Letters.

[145]  Jinghua Teng,et al.  Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer. , 2010, ACS nano.

[146]  H. Lee,et al.  Bendable Solar Cells from Stable, Flexible, and Transparent Conducting Electrodes Fabricated Using a Nitrogen‐Doped Ultrathin Copper Film , 2016 .

[147]  Karl Leo,et al.  Towards efficient tin-doped indium oxide (ITO)-free inverted organic solar cells using metal cathodes , 2009 .

[148]  S. Franzen,et al.  Infrared surface plasmon resonance of AZO-Ag-AZO sandwich thin films. , 2012, Optics express.

[149]  Karl Leo,et al.  Optimizing the morphology of metal multilayer films for indium tin oxide (ITO)-free inverted organic solar cells , 2009 .

[150]  Snyder Cw,et al.  Comment on "Delayed relaxation by surfactant action in highly strained III-V semiconductor epitaxial layers" , 1993 .

[151]  S. Chua,et al.  A mechanical assessment of flexible optoelectronic devices , 2001 .

[152]  Alex K.-Y. Jen,et al.  Optical Enhancement via Electrode Designs for High‐Performance Polymer Solar Cells , 2016 .

[153]  S. Yoo,et al.  Cu-based multilayer transparent electrodes: A low-cost alternative to ITO electrodes in organic solar cells , 2012 .

[154]  C. Henry,et al.  Limitation of Auger electron spectroscopy in the determination of the metal-on-oxide growth mode: Pd on MgO(100) , 1996 .

[155]  Weiyou Chen,et al.  Effects of the optical microcavity on the performance of ITO-free polymer solar cells with WO3/Ag/WO3 transparent electrode , 2012 .

[156]  K. Ellmer Past achievements and future challenges in the development of optically transparent electrodes , 2012, Nature Photonics.

[157]  U. Diebold,et al.  STM Study of Copper Growth on ZnO(0001)−Zn and ZnO(0001̄)−O Surfaces , 2003 .

[158]  R. Hatton,et al.  Widely applicable coinage metal window electrodes on flexible polyester substrates applied to organic photovoltaics. , 2012, ACS applied materials & interfaces.

[159]  Bauer,et al.  Structure and growth of crystalline superlattices: From monolayer to superlattice. , 1986, Physical review. B, Condensed matter.

[160]  S. Noda,et al.  A new insight into the growth mode of metals on TiO2(110). , 2002 .

[161]  C. Jenks,et al.  The effect of chalcogens (O, S) on coarsening of nanoislands on metal surfaces , 2009 .

[162]  A. Pucci,et al.  Adsorbate-induced changes in the broadband infrared transmission of ultrathin metal films , 2002 .

[163]  M. Zachariah,et al.  Molecular Dynamics Computation of Gas-Phase Nanoparticle Sintering: A Comparison with Phenomenological Models , 1999 .

[164]  In‐Hwan Lee,et al.  Effect of electron beam irradiation on the electrical and optical properties of ITO/Ag/ITO and IZO/Ag/IZO films , 2011 .

[165]  R. Hatton,et al.  A robust ultrathin, transparent gold electrode tailored for hole injection into organic light-emitting diodes , 2003 .

[166]  Han‐Ki Kim,et al.  Comparison of electrical, optical, structural, and interface properties of IZO-Ag-IZO and IZO-Au-IZO multilayer electrodes for organic photovoltaics , 2010 .

[167]  Sang-Ho Lee,et al.  Bulk-like Al/Ag bilayer film due to suppression of surface plasmon resonance for high transparent organic light emitting diodes , 2016 .

[168]  Jian Li,et al.  Transparent electrodes for organic optoelectronic devices: a review , 2014 .

[169]  Hohage,et al.  Origin of oxygen induced layer-by-layer growth in homoepitaxy on Pt(111). , 1994, Physical review letters.

[170]  C. Daube,et al.  Dependence of film composition and thicknesses on optical and electrical properties of ITO–metal–ITO multilayers , 1998 .

[171]  Karen Maex,et al.  Influence of the electron mean free path on the resistivity of thin metal films , 2004 .

[172]  Jin-A Jeong,et al.  Highly flexible and transparent InZnSnOx/Ag/InZnSnOx multilayer electrode for flexible organic light emitting diodes , 2008 .

[173]  H. Skriver,et al.  Surface energy and work function of elemental metals. , 1992, Physical review. B, Condensed matter.

[174]  M. Bäumer,et al.  Metal deposits on well-ordered oxide films , 1999 .

[175]  M. Olsson,et al.  THIN FILMS ENGINEERING OF INDIUM TIN OXIDE: LARGE AREA FLAT PANEL DISPLAYS APPLICATION , 2006 .

[176]  G. Kiriakidis,et al.  Mechanical properties of ZnO thin films deposited on polyester substrates used in flexible device applications , 2010 .

[177]  J. H. Weaver,et al.  Metastable structures and critical thicknesses: Ag on Si(111)-7×7 , 1998 .

[178]  S. Lim,et al.  Coalescence of magnetron-sputtered silver islands affected by transition metal seeding (Ni, Cr, Nb, Zr, Mo, W, Ta) and other parameters , 2008 .

[179]  T. Riedl,et al.  Manipulating the Morphology of Silver Nanoparticles with Local Plasmon‐Mediated Control , 2014 .

[180]  C. Campbell,et al.  Enthalpies and entropies of adsorption on well-defined oxide surfaces: experimental measurements. , 2013, Chemical reviews.

[181]  Jian Zhang,et al.  Recent development of the inverted configuration organic solar cells , 2011 .

[182]  T. Riedl,et al.  Indium-free bottom electrodes for inverted organic solar cells with simplified cell architectures , 2011 .

[183]  Han‐Ki Kim,et al.  Highly Transparent and Conductive Al-Doped ZnO/Ag/Al-Doped ZnO Multilayer Source/Drain Electrodes for Transparent Oxide Thin Film Transistors , 2011 .

[184]  J. Hirth,et al.  Surface energy of copper as a function of oxygen activity , 1976 .

[185]  T. Michely,et al.  HOW SENSITIVE IS EPITAXIAL GROWTH TO ADSORBATES , 1998 .

[186]  Paul Heremans,et al.  Design of Transparent Anodes for Resonant Cavity Enhanced Light Harvesting in Organic Solar Cells , 2012, Advanced materials.

[187]  Selena M. Russell,et al.  Adsorption of sulfur on Ag(100) , 2011 .

[188]  Y. Chen,et al.  Ultrathin and ultrasmooth Au films as transparent electrodes in ITO-free organic light-emitting devices. , 2016, Nanoscale.

[189]  Yang Yang,et al.  Multilayer Transparent Top Electrode for Solution Processed Perovskite/Cu(In,Ga)(Se,S)2 Four Terminal Tandem Solar Cells. , 2015, ACS nano.

[190]  S. Friedlander,et al.  A Note on the Growth of Primary Particles in Agglomerate Structures by Coalescence , 1996 .

[191]  F. Ernst Metal-oxide interfaces , 1995 .

[192]  Scheffler,et al.  Theory of adsorption and surfactant effect of Sb on Ag(111). , 1993, Physical review letters.

[193]  Matthias Scheffler,et al.  Experimental and theoretical study of oxygen adsorption structures on Ag(111) , 2009, 0904.3734.

[194]  R. Williams,et al.  Ultrasmooth silver thin films deposited with a germanium nucleation layer. , 2009, Nano letters.

[195]  Shin-Yuan Lin,et al.  ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode , 2006 .

[196]  F. Krebs,et al.  Roll‐to‐Roll fabrication of large area functional organic materials , 2013 .

[197]  M. Hajimahmoodzadeh,et al.  Very low resistance ZnS/Ag/ZnS/Ag/ZnS nano-multilayer anode for organic light emitting diodes applications. , 2013, Applied optics.

[198]  C. Guillén,et al.  Transparent electrodes based on metal and metal oxide stacked layers grown at room temperature on polymer substrate , 2010 .

[199]  S. Fukuda,et al.  Multilayer transparent electrode consisting of silver alloy layer and metal oxide layers for organic luminescent electronic display device , 2008 .

[200]  S. Xiong,et al.  Adsorption of Ag and Au atoms on wurtzite ZnO (0001) surface , 2011 .

[201]  Low temperature deposition of transparent conducting ITO/Au/ITO films by reactive magnetron sputtering , 2010 .

[202]  D. Steigerwald,et al.  Structural study of the epitaxial growth of fcc-Fe films, sandwiches, and superlattices on Cu(100) , 1988 .

[203]  C. Charton,et al.  Low resisitivity transparent electrodes for displays on polymer substrates , 2001 .

[204]  Claude R. Henry,et al.  Morphology of supported nanoparticles , 2005 .

[205]  Campbell,et al.  Growth model for metal films on oxide surfaces: Cu on ZnO(0001)-O. , 1993, Physical review. B, Condensed matter.

[206]  Thornton,et al.  Surfactant-induced layer-by-layer growth of Ag on Ag(111). , 1992, Physical review letters.

[207]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[208]  G. Henkelman,et al.  Understanding the Nucleation and Growth of Metals on TiO2: Co compared to Au, Ni and Pt , 2013 .

[209]  Optical and Structural Properties of Ultra‐thin Gold Films , 2014, 1409.7338.

[210]  M. L. Muolo,et al.  Oxygen influence on ceramics wettability by liquid metals: Ag/α-Al2O3—Experiments and modelling , 2008 .

[211]  S. C. Parker,et al.  Kinetic model for sintering of supported metal particles with improved size-dependent energetics and applications to Au on TiO 2 ( 110 ) , 2007 .

[212]  Yiping Zhao,et al.  Thickness dependent electrical resistivity of ultrathin (<40 nm) Cu films , 2001 .

[213]  Mehran Arbab,et al.  The base layer effect on the d.c. conductivity and structure of direct current magnetron sputtered thin films of silver , 2001 .

[214]  N. A. Gjostein,et al.  Particle growth in model supported metal catalysts—I. Theory , 1976 .

[215]  M. Weaver,et al.  Thin-film permeation-barrier technology for flexible organic light-emitting devices , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[216]  R. J. Bell,et al.  Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.

[217]  T. Bae,et al.  Stable ultrathin partially oxidized copper film electrode for highly efficient flexible solar cells , 2015, Nature Communications.

[218]  Lin-Wang Wang,et al.  Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption , 2016, Science.

[219]  Dorota Temple,et al.  Highly flexible transparent electrodes for organic light-emitting diode-based displays , 2004 .