Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces

Abstract This paper is devoted to the study of the Cauchy problem for the Boussinesq system with partial viscosity in dimension N ≥ 3 . First we prove a global existence result for data in Lorentz spaces satisfying a smallness condition which is at the scaling of the equations. Second, we get a uniqueness result in Besov spaces with negative indices of regularity (despite the fact that there is no smoothing effect on the temperature). The proof relies on a priori estimates with loss of regularity for the nonstationary Stokes system with convection. As a corollary, we obtain a global existence and uniqueness result for small data in Lorentz spaces.

[1]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[2]  Hiroshi Fujita,et al.  On the Navier-Stokes initial value problem. I , 1964 .

[3]  R. Danchin Density-dependent incompressible viscous fluids in critical spaces , 2003, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[4]  J. Bony,et al.  Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .

[5]  Raphaël Danchin,et al.  Estimates in Besov spaces for transport and transport-diffusion equations with almost Lipschitz coefficients , 2005 .

[6]  Takashi Kato,et al.  StrongLp-solutions of the Navier-Stokes equation inRm, with applications to weak solutions , 1984 .

[7]  木村 竜治,et al.  J. Pedlosky: Geophysical Fluid Dynamics, Springer-Verlag, New York and Heidelberg, 1979, xii+624ページ, 23.5×15.5cm, $39.8. , 1981 .

[8]  R. Danchin,et al.  Les theoremes de Leray et de Fujita-Kato pour le systeme de Boussinesq partiellement visqueux. The Leray and Fujita-Kato theorems for the Boussinesq system with partial viscosity , 2008, 0806.4083.

[9]  Winfried Sickel,et al.  Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations , 1996, de Gruyter series in nonlinear analysis and applications.

[10]  Hajer Bahouri,et al.  Equations de transport relatives à des champs de vecteurs non-lipschitziens et mécanique des fluides , 1994 .

[11]  Taoufik Hmidi,et al.  On the global well-posedness for Boussinesq system , 2007 .

[12]  Raphaël Danchin,et al.  On the uniqueness in critical spaces for compressible Navier-Stokes equations , 2005 .

[13]  H. Abidi,et al.  Existence globale pour un fluide inhomogène , 2007 .

[14]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[15]  T. Hmidi,et al.  On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity , 2007, Advances in Differential Equations.

[16]  R. Danchin LOCAL THEORY IN CRITICAL SPACES FOR COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE GASES , 2001 .

[17]  J. Chemin,et al.  Théorèmes d’unicité pour le système de navier-stokes tridimensionnel , 1999 .

[18]  J. Chemin,et al.  Fluides parfaits incompressibles , 2018, Astérisque.