Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime.

In this paper, we report on the manipulation of the near-field coupling in individual gold nanoantenna dimers resonant in the infrared (IR) spectral range. Photochemical metal deposition onto lithographically fabricated nanoantennas is used to decrease the gap between the antenna arms down to below 4 nm, as confirmed by finite-difference time-domain simulations. The increased plasmonic coupling in the gap region leads to a shift of the surface plasmon resonances to lower energies as well as to the appearance of hybridized plasmonic modes. All of the occurring electron oscillation modes can be explained by the plasmon hybridization model. Besides the bonding combination of the fundamental resonances of individual antennas, also the antibonding combination is observed in the IR transmittance at normal incidence. Its appearance is due to both structural defects and the small gaps between the antennas. The detailed analysis of individual IR antennas presented here allows a profound understanding of the spectral features occurring during the photochemical manipulation process and therefore paves the way to a full optical process monitoring of sub-nanometer scale gaps, which may serve as model systems for experimental studies of quantum mechanical effects in plasmonics.

[1]  Zongfu Yu,et al.  Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna , 2009 .

[2]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[3]  A. Borisov,et al.  Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. , 2012, Nano letters.

[4]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[5]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[6]  Garnett W. Bryant,et al.  Optical properties of coupled metallic nanorods for field-enhanced spectroscopy , 2005 .

[7]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[8]  J. Aizpurua,et al.  Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods , 2010 .

[9]  T. Schumacher,et al.  Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle , 2011, Nature Communications.

[10]  Naomi J Halas,et al.  Plasmonic nanoshell arrays combine surface-enhanced vibrational spectroscopies on a single substrate. , 2007, Angewandte Chemie.

[11]  Peter Nordlander,et al.  Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. , 2008, Nano letters.

[12]  Garnett W. Bryant,et al.  Metal‐nanoparticle plasmonics , 2008 .

[13]  Naomi J. Halas,et al.  Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates , 2008 .

[14]  Annemarie Pucci,et al.  Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes. , 2011, Optics express.

[15]  P. Biagioni,et al.  Nanoantennas for visible and infrared radiation , 2011, Reports on progress in physics. Physical Society.

[16]  I. Alber,et al.  Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers. , 2011, ACS nano.

[17]  Annemarie Pucci,et al.  Surface enhanced infrared spectroscopy using gold nanoantennas , 2010 .

[18]  J. Pendry,et al.  Transformation-optics description of nonlocal effects in plasmonic nanostructures. , 2012, Physical review letters.

[19]  F. Golmar,et al.  Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots , 2012, Nature Communications.

[20]  Masayuki Kanehara,et al.  Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes. , 2010, Nano letters.

[21]  R. Muller,et al.  Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates. , 2010, Nano letters.

[22]  Giorgio Volpe,et al.  Controlling the optical near field of nanoantennas with spatial phase-shaped beams. , 2009, Nano letters.

[23]  Annemarie Pucci,et al.  Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. , 2008, Physical review letters.

[24]  Ulrich Hohenester,et al.  Influence of surface roughness on the optical properties of plasmonic nanoparticles , 2011, 1209.5200.

[25]  N J Halas,et al.  Optical spectroscopy of conductive junctions in plasmonic cavities. , 2010, Nano letters.

[26]  N. Halas,et al.  Plasmonic nanoparticle heterodimers in a semiembedded geometry fabricated by stepwise upright assembly. , 2006, Nano letters.

[27]  Gordon S. Kino,et al.  Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible , 2004 .

[28]  S. Maier,et al.  Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach. , 2011, Nano letters.

[29]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[30]  Olivier J F Martin,et al.  Excitation and reemission of molecules near realistic plasmonic nanostructures. , 2011, Nano letters.

[31]  George C Schatz,et al.  Optical properties of nanowire dimers with a spatially nonlocal dielectric function. , 2010, Nano letters.

[32]  Javier Aizpurua,et al.  Controlling the near-field oscillations of loaded plasmonic nanoantennas , 2009 .

[33]  T. Nagao,et al.  Infrared spectroscopic and electron microscopic characterization of gold nanogap structure fabricated by focused ion beam , 2011, Nanotechnology.

[34]  Chung-Yuan Mou,et al.  Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam. , 2009, Nano letters.

[35]  P. Braun,et al.  Hole-Mask Colloidal Nanolithography for Large-Area Low-Cost Metamaterials and Resonant SEIRA Substrates , 2012 .

[36]  David L. Kaplan,et al.  Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays , 2009, Proceedings of the National Academy of Sciences.

[37]  Stefan A. Maier,et al.  High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. , 2011, Nano letters.

[38]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[39]  Naomi J Halas,et al.  Fluorescence enhancement by Au nanostructures: nanoshells and nanorods. , 2009, ACS nano.

[40]  Michel Bosman,et al.  Nanoplasmonics: classical down to the nanometer scale. , 2012, Nano letters.

[41]  Thomas Härtling,et al.  Photochemical Tuning of Plasmon Resonances in Single Gold Nanoparticles , 2008 .

[42]  Javier Aizpurua,et al.  Close encounters between two nanoshells. , 2008, Nano letters.

[43]  Alfred Forchel,et al.  Mode imaging and selection in strongly coupled nanoantennas. , 2010, Nano letters.

[44]  R. Morandotti,et al.  Extremely large extinction efficiency and field enhancement in terahertz resonant dipole nanoantennas. , 2011, Optics express.

[45]  Paul Mulvaney,et al.  Plasmon coupling of gold nanorods at short distances and in different geometries. , 2009, Nano letters.

[46]  Thomas Härtling,et al.  Spectral tuning of IR-resonant nanoantennas by nanogap engineering , 2011 .

[47]  Peter Nordlander,et al.  Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. , 2009, ACS nano.

[48]  P. Nordlander,et al.  Effects of symmetry breaking and conductive contact on the plasmon coupling in gold nanorod dimers. , 2010, ACS nano.

[49]  Javier Aizpurua,et al.  Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. , 2006, Optics Express.