The global influence of dust mineralogical composition on heterogeneous ice nucleation in mixed-phase clouds

Mineral dust is the dominant natural ice nucleating aerosol. Its ice nucleation efficiency depends on the mineralogical composition. We show the first sensitivity studies with a global climate model and a three-dimensional dust mineralogy. Results show that, depending on the dust mineralogical composition, coating with soluble material from anthropogenic sources can lead to quasi-deactivation of natural dust ice nuclei. This effect counteracts the increased cloud glaciation by anthropogenic black carbon particles. The resulting aerosol indirect effect through the glaciation of mixed-phase clouds by black carbon particles is small (+0.1 W m−2 in the shortwave top-of-the-atmosphere radiation in the northern hemisphere).

[1]  U. Schumann,et al.  In-situ observations of aerosol particles remaining from evaporated cirrus crystals: Comparing clean and polluted air masses , 2002 .

[2]  K. Diehl,et al.  Numerical sensitivity studies on the impact of aerosol properties and drop freezing modes on the glaciation, microphysics, and dynamics of clouds , 2006 .

[3]  R. Rogers,et al.  A short course in cloud physics , 1976 .

[4]  F. Khalaf,et al.  Mineralogical composition and potential sources of dust fallout deposits in Kuwait, Northern Arabian Gulf , 1985 .

[5]  U. Lohmann Possible Aerosol Effects on Ice Clouds via Contact Nucleation , 2002 .

[6]  S. Twomey The Influence of Pollution on the Shortwave Albedo of Clouds , 1977 .

[7]  A. Avila,et al.  Mineralogical composition of African dust delivered by red rains over northeastern Spain , 1997 .

[8]  Ulrike Lohmann,et al.  Sensitivity Studies of the Importance of Dust Ice Nuclei for the Indirect Aerosol Effect on Stratiform Mixed-Phase Clouds , 2006 .

[9]  M. Andreae,et al.  Internal Mixture of Sea Salt, Silicates, and Excess Sulfate in Marine Aerosols , 1986, Science.

[10]  F. Aires,et al.  Sensitivity of satellite microwave and infrared observations to soil moisture at a global scale: Relationship of satellite observations to in situ soil moisture measurements , 2005 .

[11]  M. Heimann,et al.  Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study , 2002 .

[12]  K. Diehl,et al.  Heterogeneous Drop Freezing in the Immersion Mode: Model Calculations Considering Soluble and Insoluble Particles in the Drops , 2004 .

[13]  J. Prospero,et al.  Saharan aerosols over the tropical North Atlantic — Mineralogy , 1980 .

[14]  O. Boucher,et al.  The aerosol-climate model ECHAM5-HAM , 2004 .

[15]  M. Quante The role of clouds in the climate system , 2004 .

[16]  U. Lohmann,et al.  Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM , 2007 .

[17]  U. Lohmann,et al.  A glaciation indirect aerosol effect caused by soot aerosols , 2002 .

[18]  Jean-Pierre Blanchet,et al.  Effects of arctic sulphuric acid aerosols on wintertime low-level atmospheric ice crystals, humidity and temperature at Alert, Nunavut , 2005 .

[19]  R. Braham,et al.  Ice Nucleus Measurements in an Urban Atmosphere , 1974 .

[20]  I. Zawadzki,et al.  Biogenic and anthropogenic sources of ice-forming nuclei : A review , 1997 .

[21]  A. Petzold,et al.  Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch , 2006 .

[22]  P. Goldsmith,et al.  Nucleation of water drops by Brownian contact with AgI and other aerosols , 1972 .

[23]  U. Lohmann,et al.  First interactive simulations of cirrus clouds formed by homogeneous freezing in the ECHAM general circulation model , 2002 .

[24]  U. Lohmann,et al.  A Parameterization of cirrus cloud formation: Homogeneous freezing including effects of aerosol size , 2002 .

[25]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[26]  T. Hoffer A LABORATORY INVESTIGATION OF DROPLET FREEZING , 1961 .

[27]  F. Weng,et al.  Retrieval of cloud liquid water using the special sensor microwave imager (SSM/I) , 1994 .

[28]  R. Borys Studies of ice nucleation by Arctic aerosol on AGASP-II , 1989 .

[29]  J. Prospero,et al.  Continental dust in the atmosphere of the Eastern Equatorial Pacific , 1969 .

[30]  L. Shao,et al.  Microscopy and mineralogy of airborne particles collected during severe dust storm episodes in Beijing, China , 2005 .

[31]  F. Wentz A well‐calibrated ocean algorithm for special sensor microwave / imager , 1997 .

[32]  Z. Levin,et al.  The Effects of Desert Particles Coated with Sulfate on Rain Formation in the Eastern Mediterranean , 1996 .

[33]  Ulrike Lohmann,et al.  Erratum: ``Prediction of the number of cloud droplets in the ECHAM GCM'' , 1999 .

[34]  Y. Balkanski,et al.  Modeling the mineralogy of atmospheric dust sources , 1999 .

[35]  U. Schumann,et al.  Aerosol-cirrus interactions: a number based phenomenon at all? , 2003 .

[36]  Darren L. Jackson,et al.  A physical retrieval of cloud liquid water over the global oceans using special sensor microwave/imager (SSM/I) observations , 1993 .

[37]  J. King,et al.  The effect of source area and atmospheric transport on mineral aerosol collected over the North Pacific Ocean , 1998 .

[38]  Kenneth C. Young,et al.  A Numerical Simulation of Wintertime, Orographic Precipitation: Part I. Description of Model Microphysics and Numerical Techniques , 1974 .

[39]  K. Prather,et al.  Direct observations of the atmospheric processing of Asian mineral dust , 2006 .

[40]  G. McTainsh,et al.  Sedimentological Characteristics of Saharan and Australian Dusts , 1996 .

[41]  I. Tegen,et al.  Relative importance of climate and land use in determining present and future global soil dust emission , 2004 .

[42]  L. R. Koenig,et al.  A Short Course in Cloud Physics , 1979 .

[43]  H. Pruppacher,et al.  A wind tunnel investigation of freezing of small water drops falling at terminal velocity in air , 1973 .

[44]  S. Joussaume,et al.  Comments on the origin of dust in East Antarctica for present and ice age conditions , 1992 .

[45]  Y. Balkanski,et al.  Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data , 2006 .

[46]  I. Gultepe,et al.  Ice crystal number concentration versus temperature for climate studies , 2001 .

[47]  R. Schneider,et al.  Provenance of present‐day eolian dust collected off NW Africa , 2005 .

[48]  S. Kreidenweis,et al.  Measurements of heterogeneous ice nuclei in the western United States in springtime and their relation to aerosol characteristics , 2007 .

[49]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[50]  J. Prospero,et al.  Mineralogy of aeolian dust reaching the North Pacific Ocean: 1. Sampling and analysis , 1994 .

[51]  R. Rauber,et al.  Numerical Simulation of the Effects of Varying Ice Crystal Nucleation Rates and Aggregation Processes on Orographic Snowfall , 1986 .

[52]  Albert Ansmann,et al.  Ice formation in Saharan dust over central Europe observed with temperature/humidity//aerosol Raman lidar , 2005 .

[53]  Zhenxing Shen,et al.  Mass concentration and mineralogical characteristics of aerosol particles collected at Dunhuang during ACE-Asia , 2006 .