Recommender systems based on user reviews: the state of the art

In recent years, a variety of review-based recommender systems have been developed, with the goal of incorporating the valuable information in user-generated textual reviews into the user modeling and recommending process. Advanced text analysis and opinion mining techniques enable the extraction of various types of review elements, such as the discussed topics, the multi-faceted nature of opinions, contextual information, comparative opinions, and reviewers’ emotions. In this article, we provide a comprehensive overview of how the review elements have been exploited to improve standard content-based recommending, collaborative filtering, and preference-based product ranking techniques. The review-based recommender system’s ability to alleviate the well-known rating sparsity and cold-start problems is emphasized. This survey classifies state-of-the-art studies into two principal branches: review-based user profile building and review-based product profile building. In the user profile sub-branch, the reviews are not only used to create term-based profiles, but also to infer or enhance ratings. Multi-faceted opinions can further be exploited to derive the weight/value preferences that users place on particular features. In another sub-branch, the product profile can be enriched with feature opinions or comparative opinions to better reflect its assessment quality. The merit of each branch of work is discussed in terms of both algorithm development and the way in which the proposed algorithms are evaluated. In addition, we discuss several future trends based on the survey, which may inspire investigators to pursue additional studies in this area.

[1]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .

[2]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[3]  Andrew Ortony,et al.  The Cognitive Structure of Emotions , 1988 .

[4]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[5]  John W. Payne,et al.  The adaptive decision maker: Name index , 1993 .

[6]  Eric J. Johnson,et al.  The adaptive decision maker , 1993 .

[7]  F. B. Vernadat,et al.  Decisions with Multiple Objectives: Preferences and Value Tradeoffs , 1994 .

[8]  Yoav Shoham,et al.  Fab: content-based, collaborative recommendation , 1997, CACM.

[9]  M. Wedel,et al.  Market Segmentation: Conceptual and Methodological Foundations , 1997 .

[10]  Eric Horvitz,et al.  The Lumière Project: Bayesian User Modeling for Inferring the Goals and Needs of Software Users , 1998, UAI.

[11]  Mitchell P. Marcus,et al.  Maximum entropy models for natural language ambiguity resolution , 1998 .

[12]  Dean P. Foster,et al.  Clustering Methods for Collaborative Filtering , 1998, AAAI 1998.

[13]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[14]  S. Dibb Market Segmentation: Conceptual and Methodological Foundations (2nd edition) , 2000 .

[15]  Barry Smyth,et al.  A personalised TV listings service for the digital TV age , 2000, Knowl. Based Syst..

[16]  Naftali Tishby,et al.  The information bottleneck method , 2000, ArXiv.

[17]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[18]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[19]  Ke Wang,et al.  RecTree: An Efficient Collaborative Filtering Method , 2001, DaWaK.

[20]  Barry Smyth,et al.  Similarity vs. Diversity , 2001, ICCBR.

[21]  P. Chatterjee,et al.  Online Reviews: Do Consumers Use Them? , 2006 .

[22]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[23]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[24]  Francesco Ricci,et al.  Case-Based Recommender Systems: A Unifying View , 2003, ITWP.

[25]  David McSherry,et al.  Similarity and Compromise , 2003, ICCBR.

[26]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[27]  Thomas Hofmann,et al.  Latent semantic models for collaborative filtering , 2004, TOIS.

[28]  Tong Zhang,et al.  Text Mining: Predictive Methods for Analyzing Unstructured Information , 2004 .

[29]  Bing Liu,et al.  Mining Opinion Features in Customer Reviews , 2004, AAAI.

[30]  Li Chen,et al.  Survey of Preference Elicitation Methods , 2004 .

[31]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[32]  John Riedl,et al.  E-Commerce Recommendation Applications , 2004, Data Mining and Knowledge Discovery.

[33]  M. de Rijke,et al.  UvA-DARE ( Digital Academic Repository ) Using WordNet to measure semantic orientations of adjectives , 2004 .

[34]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[35]  Brigitte Trousse,et al.  A personalized recommender system for travel information , 2004, UbiMob.

[36]  Bing Liu,et al.  Opinion observer: analyzing and comparing opinions on the Web , 2005, WWW '05.

[37]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[38]  Michael I. Jordan,et al.  A Probabilistic Interpretation of Canonical Correlation Analysis , 2005 .

[39]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[40]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[41]  Li Chen,et al.  Integrating tradeoff support in product search tools for e-commerce sites , 2005, EC '05.

[42]  Sean M. McNee,et al.  Improving recommendation lists through topic diversification , 2005, WWW '05.

[43]  Oren Etzioni,et al.  Extracting Product Features and Opinions from Reviews , 2005, HLT.

[44]  Cane Wing-ki Leung,et al.  Integrating Collaborative Filtering and Sentiment Analysis: A Rating Inference Approach , 2006 .

[45]  Andrea Esuli,et al.  SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining , 2006, LREC.

[46]  Bing Liu,et al.  Mining Comparative Sentences and Relations , 2006, AAAI.

[47]  Noam Slonim,et al.  The Information Bottleneck : Theory and Applications , 2006 .

[48]  Yi Zhang,et al.  Bayesian adaptive user profiling with explicit & implicit feedback , 2006, CIKM '06.

[49]  Barry Smyth,et al.  Case-Based Recommendation , 2007, The Adaptive Web.

[50]  Regina Barzilay,et al.  Multiple Aspect Ranking Using the Good Grief Algorithm , 2007, NAACL.

[51]  Michael J. Pazzani,et al.  Content-Based Recommendation Systems , 2007, The Adaptive Web.

[52]  Alfred Kobsa,et al.  The Adaptive Web, Methods and Strategies of Web Personalization , 2007, The Adaptive Web.

[53]  Gustavo González,et al.  Embedding Emotional Context in Recommender Systems , 2007, 2007 IEEE 23rd International Conference on Data Engineering Workshop.

[54]  John K. Debenham,et al.  Informed Recommender: Basing Recommendations on Consumer Product Reviews , 2007, IEEE Intelligent Systems.

[55]  Ruslan Salakhutdinov,et al.  Probabilistic Matrix Factorization , 2007, NIPS.

[56]  Gediminas Adomavicius,et al.  New Recommendation Techniques for Multicriteria Rating Systems , 2007, IEEE Intelligent Systems.

[57]  Jaideep Srivastava,et al.  Impact of social influence in e-commerce decision making , 2007, ICEC.

[58]  Domonkos Tikk,et al.  Major components of the gravity recommendation system , 2007, SKDD.

[59]  Òscar Celma,et al.  A new approach to evaluating novel recommendations , 2008, RecSys '08.

[60]  Bing Liu,et al.  Mining Opinions in Comparative Sentences , 2008, COLING.

[61]  Tieniu Tan,et al.  Affective Information Processing , 2008 .

[62]  Nan Du,et al.  Improved recommendation based on collaborative tagging behaviors , 2008, IUI '08.

[63]  Bing Liu,et al.  Opinion spam and analysis , 2008, WSDM '08.

[64]  Volker Tresp,et al.  Relation Prediction in Multi-Relational Domains using Matrix Factorization , 2008 .

[65]  Alexander Yates,et al.  SHOPSMART: product recommendations through technical specifications and user reviews , 2008, CIKM '08.

[66]  Gediminas Adomavicius,et al.  Context-aware recommender systems , 2008, RecSys '08.

[67]  Taghi M. Khoshgoftaar,et al.  A Survey of Collaborative Filtering Techniques , 2009, Adv. Artif. Intell..

[68]  Rohini K. Srihari,et al.  OpinionMiner: a novel machine learning system for web opinion mining and extraction , 2009, KDD.

[69]  Yihong Gong,et al.  Fast nonparametric matrix factorization for large-scale collaborative filtering , 2009, SIGIR.

[70]  Gordon I. McCalla,et al.  The Pedagogical Value of Papers: a Collaborative-Filtering based Paper Recommender , 2009, J. Digit. Inf..

[71]  Iryna Gurevych,et al.  Beyond the stars: exploiting free-text user reviews to improve the accuracy of movie recommendations , 2009, TSA@CIKM.

[72]  Yehuda Koren,et al.  Matrix Factorization Techniques for Recommender Systems , 2009, Computer.

[73]  Ramesh Nallapati,et al.  Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora , 2009, EMNLP.

[74]  Helmut Prendinger,et al.  A Linguistic Interpretation of the OCC Emotion Model for Affect Sensing from Text , 2009, Affective Information Processing.

[75]  Wei Wu,et al.  Automatic Generation of Personalized Annotation Tags for Twitter Users , 2010, NAACL.

[76]  Barry Smyth,et al.  Effective Product Recommendation using the Real-Time Web , 2010, SGAI Conf..

[77]  Bing Liu,et al.  Sentiment Analysis and Subjectivity , 2010, Handbook of Natural Language Processing.

[78]  Lior Rokach,et al.  Recommender Systems Handbook , 2010 .

[79]  Alok N. Choudhary,et al.  Voice of the Customers: Mining Online Customer Reviews for Product Feature-based Ranking , 2010, WOSN.

[80]  Isabelle Tellier,et al.  Towards text-based recommendations , 2010, RIAO.

[81]  Li Chen,et al.  A Linear-Chain CRF-Based Learning Approach for Web Opinion Mining , 2010, WISE.

[82]  Li Chen,et al.  Experiments on the preference-based organization interface in recommender systems , 2010, TCHI.

[83]  Martin Ester,et al.  Opinion digger: an unsupervised opinion miner from unstructured product reviews , 2010, CIKM.

[84]  Yi Zhang,et al.  Contextual Recommendation based on Text Mining , 2010, COLING.

[85]  Isabelle Tellier,et al.  Reducing the Cold-Start Problem in Content Recommendation through Opinion Classification , 2010, 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[86]  Tamara G. Kolda,et al.  Scalable Tensor Factorizations for Incomplete Data , 2010, ArXiv.

[87]  John Hannon,et al.  Recommending twitter users to follow using content and collaborative filtering approaches , 2010, RecSys '10.

[88]  Daniel Dajun Zeng,et al.  Mining Fine Grained Opinions by Using Probabilistic Models and Domain Knowledge , 2010, 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[89]  Nitin Indurkhya,et al.  Handbook of Natural Language Processing , 2010 .

[90]  Joemon M. Jose,et al.  Handling data sparsity in collaborative filtering using emotion and semantic based features , 2011, SIGIR.

[91]  Bernd Ludwig,et al.  Context relevance assessment and exploitation in mobile recommender systems , 2012, Personal and Ubiquitous Computing.

[92]  Bamshad Mobasher,et al.  Context-Aware Recommendation Based On Review Mining , 2011, ITWP@IJCAI.

[93]  Chun Chen,et al.  Opinion Word Expansion and Target Extraction through Double Propagation , 2011, CL.

[94]  Meng Wang,et al.  Product comparison using comparative relations , 2011, SIGIR.

[95]  Jochen L. Leidner,et al.  Handbook of Natural Language Processing (second edition) , 2011 .

[96]  Ingrid Zukerman,et al.  Personalised rating prediction for new users using latent factor models , 2011, HT '11.

[97]  Yehuda Koren,et al.  Advances in Collaborative Filtering , 2011, Recommender Systems Handbook.

[98]  Judith Masthoff,et al.  Designing and Evaluating Explanations for Recommender Systems , 2011, Recommender Systems Handbook.

[99]  Li Chen,et al.  A user-centric evaluation framework for recommender systems , 2011, RecSys '11.

[100]  Barry Smyth,et al.  A multi-criteria evaluation of a user generated content based recommender system , 2011, RecSys 2011.

[101]  Guy Shani,et al.  Evaluating Recommendation Systems , 2011, Recommender Systems Handbook.

[102]  Bart P. Knijnenburg,et al.  Explaining the user experience of recommender systems , 2012, User Modeling and User-Adapted Interaction.

[103]  Siamak Faridani Using canonical correlation analysis for generalized sentiment analysis, product recommendation and search , 2011, RecSys '11.

[104]  Andreas Hotho,et al.  Social Tagging Recommender Systems , 2011, Recommender Systems Handbook.

[105]  Pasquale Lops,et al.  Content-based Recommender Systems: State of the Art and Trends , 2011, Recommender Systems Handbook.

[106]  Christophe Diot,et al.  Finding a needle in a haystack of reviews: cold start context-based hotel recommender system , 2012, RecSys.

[107]  Xiaohui Yu,et al.  Collaborative Filtering with Aspect-Based Opinion Mining: A Tensor Factorization Approach , 2012, 2012 IEEE 12th International Conference on Data Mining.

[108]  Yang Guo,et al.  On top-k recommendation using social networks , 2012, RecSys.

[109]  Joydeep Ghosh,et al.  Review quality aware collaborative filtering , 2012, RecSys '12.

[110]  Jurij F. Tasic,et al.  Emotion-Aware Recommender Systems - A Framework and a Case Study , 2012, ICT Innovations.

[111]  Nakornthip Prompoon,et al.  Analyzing software reviews for software quality-based ranking , 2013, 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology.

[112]  Li Chen,et al.  Preference-based clustering reviews for augmenting e-commerce recommendation , 2013, Knowl. Based Syst..

[113]  Hongyan Liu,et al.  Combining user preferences and user opinions for accurate recommendation , 2013, Electron. Commer. Res. Appl..

[114]  Boi Faltings,et al.  Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence Recommendation Using Textual Opinions , 2022 .

[115]  Markus Schaal,et al.  Sentimental product recommendation , 2013, RecSys.

[116]  Tomás Horváth,et al.  Opinion-Driven Matrix Factorization for Rating Prediction , 2013, UMAP.

[117]  Jure Leskovec,et al.  Hidden factors and hidden topics: understanding rating dimensions with review text , 2013, RecSys.

[118]  Sun Yi,et al.  Survey of personalized recommendation based on society networks analysis , 2013, 2013 6th International Conference on Information Management, Innovation Management and Industrial Engineering.

[119]  Li Chen,et al.  Recommendation for New Users with Partial Preferences by Integrating Product Reviews with Static Specifications , 2013, UMAP.

[120]  Mehrbakhsh Nilashi,et al.  Collaborative filtering recommender systems , 2013 .

[121]  Mohammed Al-Taie Explanations In Recommender Systems : Overview And Research Approaches , 2013 .

[122]  Amélie Marian,et al.  Improving the quality of predictions using textual information in online user reviews , 2013, Inf. Syst..

[123]  Markus Schaal,et al.  Opinionated Product Recommendation , 2013, ICCBR.

[124]  Li Chen,et al.  Generating virtual ratings from chinese reviews to augment online recommendations , 2013, TIST.

[125]  Wei Zeng,et al.  A unified framework for recommending items, groups and friends in social media environment via mutual resource fusion , 2013, Expert Syst. Appl..

[126]  Pearl Pu,et al.  Prediction of Helpful Reviews Using Emotions Extraction , 2014, AAAI.

[127]  Li Chen,et al.  Recommendation Based on Contextual Opinions , 2014, UMAP.

[128]  Anil Poriya,et al.  Non-Personalized Recommender Systems and User-based Collaborative Recommender Systems , 2014 .

[129]  Li Chen,et al.  Sentiment-enhanced explanation of product recommendations , 2014, WWW.

[130]  Navneet Kaur,et al.  Opinion mining and sentiment analysis , 2016, 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom).

[131]  Lei Zhang,et al.  Sentiment Analysis and Opinion Mining , 2017, Encyclopedia of Machine Learning and Data Mining.