2-additive Choquet Optimal Solutions in Multiobjective Optimization Problems

In this paper, we propose a sufficient condition for a solution to be optimal for a 2-additive Choquet integral in the context of multiobjective combinatorial optimization problems. A 2-additive Choquet optimal solution is a solution that optimizes at least one set of parameters of the 2-additive Choquet integral. We also present a method to generate 2-additive Choquet optimal solutions of multiobjective combinatorial optimization problems. The method is experimented on some Pareto fronts and the results are analyzed.

[1]  Patrice Perny,et al.  A Branch and Bound Algorithm for Choquet Optimization in Multicriteria Problems , 2008, MCDM.

[2]  G. Choquet Theory of capacities , 1954 .

[3]  R. Mesiar,et al.  Aggregation Functions: Aggregation on ordinal scales , 2009 .

[4]  V. Torra The weighted OWA operator , 1997, International Journal of Intelligent Systems.

[5]  Patrick Meyer,et al.  On the expressiveness of the additive value function and the Choquet integral models , 2012 .

[6]  Michel Grabisch,et al.  K-order Additive Discrete Fuzzy Measures and Their Representation , 1997, Fuzzy Sets Syst..

[7]  R. Mesiar,et al.  Aggregation Functions (Encyclopedia of Mathematics and its Applications) , 2009 .

[8]  Patrice Perny,et al.  Choquet-based optimisation in multiobjective shortest path and spanning tree problems , 2010, Eur. J. Oper. Res..

[9]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[10]  Matthias Ehrgott,et al.  Multicriteria Optimization (2. ed.) , 2005 .

[11]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[12]  Jacques Teghem,et al.  The multiobjective multidimensional knapsack problem: a survey and a new approach , 2010, Int. Trans. Oper. Res..

[13]  Xavier Gandibleux,et al.  Preferred solutions computed with a label setting algorithm based on Choquet integral for multi-objective shortest paths , 2011, 2011 IEEE Symposium on Computational Intelligence in Multicriteria Decision-Making (MDCM).

[14]  Thibaut Lust,et al.  Choquet optimal set in biobjective combinatorial optimization , 2013, Comput. Oper. Res..

[15]  Alain Chateauneuf,et al.  Some Characterizations of Lower Probabilities and Other Monotone Capacities through the use of Möbius Inversion , 1989, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[16]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[17]  Thibaut Lust,et al.  On the Computation of Choquet Optimal Solutions in Multicriteria Decision Contexts , 2013, MIWAI.

[18]  G. Rota On the Foundations of Combinatorial Theory , 2009 .

[19]  M. Grabisch The application of fuzzy integrals in multicriteria decision making , 1996 .

[20]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[21]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .

[22]  Michel Grabisch,et al.  A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid , 2010, Ann. Oper. Res..