Exploring FeSe-based superconductors by liquid ammonia method

Our recent progress on the preparation of a series of new FeSe-based superconductors and the clarification of SC phases in potassium-intercalated iron selenides are reviewed here. By the liquid ammonia method, metals Li, Na, Ca, Sr, Ba, Eu, and Yb are intercalated in between FeSe layers and form superconductors with transition temperatures of 30 K~46 K, which cannot be obtained by high-temperature routes. In the potassium-intercalated iron selenides, we demonstrate that at least two SC phases exist, KxFe2Se2(NH3)y (x ≈ 0.3 and 0.6), determined mainly by the concentration of potassium. NH3 has little, if any, effect on superconductivity, but plays an important role in stabilizing the structures. All these results provide a new starting point for studying the intrinsic properties of this family of superconductors, especially for their particular electronic structures.

[1]  Lin Zhao,et al.  Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. , 2012, Nature materials.

[2]  T. Takabatake,et al.  Superconductivity of metal nitride chloride β-MNCl (M = Zr, Hf) with rare-earth metal RE (RE = Eu, Yb) doped by intercalation , 2013 .

[3]  Gang Wang,et al.  Superconducting phases in potassium-intercalated iron selenides. , 2013, Journal of the American Chemical Society.

[4]  E. Dagotto Colloquium: The unexpected properties of alkali metal iron selenide superconductors , 2012, 1210.6501.

[5]  S. Blundell,et al.  Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer. , 2012, Nature materials.

[6]  W. Tong,et al.  Superconductivity at 44 K in K intercalated FeSe system with excess Fe , 2012, Scientific Reports.

[7]  H. Wen Overview on the physics and materials of the new superconductor KxFe2−ySe2 , 2012, Reports on progress in physics. Physical Society.

[8]  M. Kanatzidis,et al.  Phase relations in K xFe 2-ySe 2 and the structure of superconducting K xFe 2Se 2 via high-resolution synchrotron diffraction , 2012, 1209.1650.

[9]  H. Tian,et al.  Structural Phase Separation in K0.8Fe1.6+xSe2 Superconductors , 2012 .

[10]  Lin Zhao,et al.  Phase Diagram and High Temperature Superconductivity at 65 K in Tuning Carrier Concentration of Single-Layer FeSe Films , 2012 .

[11]  V. Pomjakushin,et al.  Synthesis of a new alkali metal–organic solvent intercalated iron selenide superconductor with Tc ≈ 45 K , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  A. Loidl,et al.  Superconductivity at Tc = 44 K in LixFe2Se2(NH3)y , 2012, 1205.5731.

[13]  D. Chernyshov,et al.  Intrinsic crystal phase separation in the antiferromagnetic superconductor RbyFe2−xSe2: a diffraction study , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  A. Loidl,et al.  NMR study in the iron-selenide Rb0.74Fe1.6Se2: determination of the superconducting phase as iron vacancy-free Rb0.3Fe2Se2. , 2012, Physical review letters.

[15]  H. Mao,et al.  Re-emerging superconductivity at 48 kelvin in iron chalcogenides , 2012, Nature.

[16]  Lin Zhao,et al.  Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor , 2012, Nature Communications.

[17]  T. Ying,et al.  Observation of superconductivity at 30∼46K in AxFe2Se2 (A = Li, Na, Ba, Sr, Ca, Yb, and Eu) , 2012, Scientific Reports.

[18]  Q. Xue,et al.  Phase separation and magnetic order in K-doped iron selenide superconductor , 2011, Nature Physics.

[19]  T. Xiang,et al.  Two-magnon Raman scattering in A 0.8 Fe 1.6 Se 2 systems (A=K, Rb, Cs, and Tl): Competition between superconductivity and antiferromagnetic order , 2011, 1106.2706.

[20]  Jiuning Hu,et al.  Nanoscale phase separation of antiferromagnetic order and superconductivity in K0.75Fe1.75Se2 , 2011, Scientific Reports.

[21]  Yuanbo Zhang,et al.  Electronic Identification of the Parental Phases and Mesoscopic Phase Separation of KxFe2-ySe2 Superconductors , 2011 .

[22]  C. Felser,et al.  Phase separation in superconducting and antiferromagnetic Rb0.8Fe1.6Se2 probed by M , 2011, 1108.3006.

[23]  X.Y.Lu,et al.  Antiferromagnetic order and superlattice structure in nonsuperconducting and superconducting RbyFe1.6+xSe2 , 2011, 1108.2895.

[24]  A. Bianconi,et al.  Intrinsic phase separation in superconducting K0.8Fe1.6Se2 (Tc = 31.8 K) single crystals , 2011, 1107.0409.

[25]  M. Burghammer,et al.  Nanoscale phase separation in the iron chalcogenide superconductor K 0 . 8 Fe 1 . 6 Se 2 as seen via scanning nanofocused x-ray diffraction , 2011, 1107.0412.

[26]  X. Dai,et al.  Absence of a holelike fermi surface for the iron-based K0.8F1.7Se2 superconductor revealed by angle-resolved photoemission spectroscopy. , 2011, Physical review letters.

[27]  Z. Wang,et al.  Microstructure and ordering of iron vacancies in the superconductor system K y Fe x Se 2 as seen via transmission electron microscopy , 2011 .

[28]  M. Fang,et al.  Fe-based superconductivity with Tc=31 K bordering an antiferromagnetic insulator in (Tl,K) FexSe2 , 2011 .

[29]  X. H. Chen,et al.  Nodeless superconducting gap in A(x)Fe2Se2 (A=K,Cs) revealed by angle-resolved photoemission spectroscopy. , 2010, Nature materials.

[30]  Z Shermadini,et al.  Room temperature antiferromagnetic order in superconducting XyFe2 − xSe2 (X = Rb, K): a neutron powder diffraction study , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[31]  X. H. Chen,et al.  Common crystalline and magnetic structure of superconducting A2Fe4Se5 (A=K,Rb,Cs,Tl) single crystals measured using neutron diffraction. , 2011, Physical review letters.

[32]  M. Zhang,et al.  Coexistence of superconductivity and antiferromagnetism in single crystals A0.8Fe2−ySe2 (A=K, Rb, Cs, Tl/K and Tl/Rb): Evidence from magnetization and resistivity , 2011, 1102.2783.

[33]  M. Green,et al.  A Novel Large Moment Antiferromagnetic Order in K 0.8 Fe 1.6 Se 2 Superconductor , 2011, 1102.0830.

[34]  Lin Zhao,et al.  Distinct Fermi Surface Topology and Nodeless Superconducting Gap in a ð Tl , 2011 .

[35]  A. Amato,et al.  Coexistence of magnetism and superconductivity in the iron-based compound Cs0.8(FeSe0.98)2. , 2011, Physical review letters.

[36]  G. Chen,et al.  Effect of varying iron content on the transport properties of the potassium-intercalated iron selenide KxFe2-ySe2 , 2011, 1101.0789.

[37]  M. Fang,et al.  Superconductivity at 32 K and anisotropy in Tl0.58Rb0.42Fe1.72Se2 crystals , 2011, 1101.0462.

[38]  M. Zhang,et al.  Superconductivity at 32 K in single-crystalline Rb x Fe 2 − y Se 2 , 2010, 1012.5525.

[39]  A. Amato,et al.  Synthesis and crystal growth of Cs0.8(FeSe0.98)2: a new iron-based superconductor with Tc = 27 K , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[40]  X. H. Chen,et al.  D ec 2 01 0 Heavily electron-doped electronic structure and isotropic superconducting gap in A x Fe 2 Se 2 ( A = K , Cs ) , 2011 .

[41]  M. Fang,et al.  Fe-based high temperature superconductivity with Tc=31K bordering an insulating antiferromagnet in (Tl,K)FexSe2 Crystals , 2010, 1012.5236.

[42]  Gang Wang,et al.  Superconductivity in the iron selenide K x Fe 2 Se 2 (0≤x≤1.0) , 2010 .

[43]  R. Ziebarth,et al.  Rapid and efficient synthesis of alkali metal-C60 compounds in liquid ammonia , 1993 .

[44]  M. Whittingham Chemistry of intercalation compounds: Metal guests in chalcogenide hosts , 1979 .

[45]  G. Rao,et al.  Superconductivity in alkaline earth metal and Yb intercalated group VI layered dichalcogenides , 1974 .

[46]  R. Somoano,et al.  Alkali metal intercalates of molybdenum disulfide. , 1973 .

[47]  R. Somoano,et al.  SUPERCONDUCTIVITY IN INTERCALATED MOLYBDENUM DISULFIDE. , 1971 .