Structural effects of DNA sequence on T.A recognition by hydroxypyrrole/pyrrole pairs in the minor groove.

Synthetic polyamides composed of three types of aromatic amino acids, N-methylimidazole (Im), N-methylpyrrole (Py) and N-methyl-3-hydroxypyrrole (Hp) bind specific DNA sequences as antiparallel dimers in the minor groove. The side-by-side pairings of aromatic rings in the dimer afford a general recognition code that allows all four base-pairs to be distinguished. To examine the structural consequences of changing the DNA sequence context on T.A recognition by Hp/Py pairs in the minor groove, crystal structures of polyamide dimers (ImPyHpPy)(2) and the pyrrole counterpart (ImPyPyPy)(2) bound to the six base-pair target site 5'-AGATCT-3' in a ten base-pair oligonucleotide have been determined to a resolution of 2.27 and 2.15 A, respectively. The structures demonstrate that the principles of Hp/Py recognition of T.A are consistent between different sequence contexts. However, a general structural explanation for the non-additive reduction in binding affinity due to introduction of the hydroxyl group is less clear. Comparison with other polyamide-DNA cocrystal structures reveals structural themes and differences that may relate to sequence preference.

[1]  T. Clackson,et al.  A hot spot of binding energy in a hormone-receptor interface , 1995, Science.

[2]  P. Dervan,et al.  A Pyrrole‐Imidazole Polyamide Motif for Recognition of Eleven Base Pair Sequences in the Minor Groove of DNA , 1997 .

[3]  J. Kelly,et al.  Binding site size limit of the 2:1 pyrrole-imidazole polyamide-DNA motif. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[5]  P. Dervan,et al.  Antiparallel side-by-side heterodimer for sequence-specific recognition in the minor groove of DNA by a distamycin/1-methylimidazole-2-carboxamide-netropsin pair , 1993 .

[6]  J G Pelton,et al.  Structural characterization of a 2:1 distamycin A.d(CGCAAATTGGC) complex by two-dimensional NMR. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[7]  D C Rees,et al.  A structural basis for recognition of A.T and T.A base pairs in the minor groove of B-DNA. , 1998, Science.

[8]  D. Wemmer,et al.  Structural and dynamic characterization of the heterodimeric and homodimeric complexes of distamycin and 1-methylimidazole-2-carboxamide-netropsin bound to the minor groove of DNA. , 1994, Biochemistry.

[9]  Axel T. Brunger,et al.  Assessment of Phase Accuracy by Cross Validation: the Free R Value. Methods and Applications , 1993 .

[10]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[11]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[12]  P. Dervan,et al.  Design of peptides that bind in the minor groove of DNA at 5'-(A,T)G(A,T)C(A,T)-3' sequences by a dimeric side-by-side motif , 1992 .

[13]  The coming of age of DMA crystallography , 1993 .

[14]  U. Heinemann,et al.  Crystallographic study of one turn of G/C-rich B-DNA. , 1989, Journal of molecular biology.

[15]  P. Dervan,et al.  On the pairing rules for recognition in the minor groove of DNA by pyrrole-imidazole polyamides. , 1997, Chemistry & biology.

[16]  G. Shulman,et al.  Disruption of IRS-2 causes type 2 diabetes in mice , 1998, Nature.

[17]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[18]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[19]  Peter B. Dervan,et al.  Tandem Hairpin Motif for Recognition in the Minor Groove of DNA by Pyrrole–Imidazole Polyamides , 1999 .

[20]  D E Wemmer,et al.  Design of a G.C-specific DNA minor groove-binding peptide. , 1994, Science.

[21]  D. Bacon,et al.  A fast algorithm for rendering space-filling molecule pictures , 1988 .

[22]  P. Dervan,et al.  Recognition of seven base pair sequences in the minor groove of DNA by ten-ring pyrrole-imidazole polyamide hairpins , 1997 .

[23]  P. Dervan,et al.  Effects of γ-Turn and β-Tail Amino Acids on Sequence-Specific Recognition of DNA by Hairpin Polyamides , 1999 .

[24]  D S Goodsell,et al.  Defining GC-specificity in the minor groove: side-by-side binding of the di-imidazole lexitropsin to C-A-T-G-G-C-C-A-T-G. , 1997, Structure.

[25]  J. Trauger,et al.  Recognition of DNA by designed ligands at subnanomolar concentrations , 1996, Nature.

[26]  P. Dervan,et al.  Aliphatic/aromatic amino acid pairings for polyamide recognition in the minor groove of DNA , 1998 .

[27]  B. Ramakrishnan,et al.  Crystal structures of the side-by-side binding of distamycin to AT-containing DNA octamers d(ICITACIC) and d(ICATATIC). , 1997, Journal of molecular biology.

[28]  J. Trauger,et al.  Extension of sequence-specific recognition in the minor groove of DNA by pyrrole-imidazole polyamides to 9-13 base pairs , 1996 .

[29]  P. Dervan,et al.  Solid phase synthesis of polyamides containing imidazole and pyrrole amino acids , 1996 .

[30]  E A Merritt,et al.  Raster3D Version 2.0. A program for photorealistic molecular graphics. , 1994, Acta crystallographica. Section D, Biological crystallography.

[31]  D. Wemmer,et al.  NMR Characterization of the Aliphatic β/β Pairing for Recognition of A·T/T·A Base Pairs in the Minor Groove of DNA , 1999 .

[32]  R. Dickerson,et al.  Analysis of local helix geometry in three B-DNA decamers and eight dodecamers. , 1991, Journal of molecular biology.

[33]  M. Sundaralingam,et al.  Structure of the side-by-side binding of distamycin to d(GTATATAC)2. , 1999, Acta crystallographica. Section D, Biological crystallography.

[34]  Peter B. Dervan,et al.  Recognition of the four Watson–Crick base pairs in the DNA minor groove by synthetic ligands , 1998, Nature.

[35]  D. Wemmer,et al.  NMR Characterization of Hairpin Polyamide Complexes with the Minor Groove of DNA , 1997 .

[36]  P. Dervan,et al.  Binding affinities of synthetic peptides, pyridine-2-carboxamidonetropsin and 1-methylimidazole-2-carboxamidonetropsin, that form 2:1 complexes in the minor groove of double-helical DNA. , 1993, Biochemistry.

[37]  D. Wemmer,et al.  Antiparallel side-by-side dimeric motif for sequence-specific recognition in the minor groove of DNA by the designed peptide 1-methylimidazole-2-carboxamide netropsin. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[38]  D. Rees,et al.  Structural basis for G•C recognition in the DNA minor groove , 1998, Nature Structural Biology.

[39]  C R Calladine,et al.  Mechanics of sequence-dependent stacking of bases in B-DNA. , 1982, Journal of molecular biology.

[40]  R M Esnouf,et al.  An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. , 1997, Journal of molecular graphics & modelling.

[41]  H. Berman,et al.  New parameters for the refinement of nucleic acid-containing structures. , 1996, Acta crystallographica. Section D, Biological crystallography.

[42]  D. Rees,et al.  Conformational flexibility of B-DNA at 0.74 A resolution: d(CCAGTACTGG)(2). , 2000, Journal of molecular biology.

[43]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[44]  W. Hunter,et al.  Crystal and molecular structure of d(CGTAGATCTACG) at 2.25 A resolution. , 1993, Journal of molecular biology.

[45]  Peter B. Dervan,et al.  Affinity and specificity of multiple hydroxypyrrole/pyrrole ring pairings for coded recognition of DNA , 1999 .

[46]  R. Dickerson,et al.  Base sequence and helix structure variation in B and A DNA. , 1983, Journal of molecular biology.

[47]  B. Ramakrishnan,et al.  Binding of two distamycin A molecules in the minor groove of an alternating B–DNA duplex , 1994, Nature Structural Biology.

[48]  A. Wang,et al.  Binding of AR-1-144, a tri-imidazole DNA minor groove binder, to CCGG sequence analyzed by NMR spectroscopy. , 1999, European journal of biochemistry.

[49]  P. Dervan,et al.  Orientation Preferences of Pyrrole−Imidazole Polyamides in the Minor Groove of DNA , 1997 .

[50]  P. Dervan,et al.  Effects of the A.T/T.A degeneracy of pyrrole--imidazole polyamide recognition in the minor groove of DNA. , 1996, Biochemistry.

[51]  B. Ramakrishnan,et al.  Crystal structures of B-form DNA–RNA chimers complexed with distamycin , 1995, Nature Structural Biology.

[52]  R. Dickerson,et al.  Alternative structures for alternating poly(dA-dT) tracts: the structure of the B-DNA decamer C-G-A-T-A-T-A-T-C-G , 1992 .

[53]  D. Wemmer,et al.  Binding modes of distamycin A with d(CGCAAATTTGCG)2 determined by two-dimensional NMR , 1990 .

[54]  P. Dervan,et al.  DISCRIMINATION OF 5'-GGGG-3', 5'-GCGC-3', AND 5'-GGCC-3' SEQUENCES IN THE MINOR GROOVE OF DNA BY EIGHT-RING HAIRPIN POLYAMIDES , 1997 .

[55]  R Lavery,et al.  The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. , 1988, Journal of biomolecular structure & dynamics.

[56]  P. Dervan,et al.  Hairpin Peptide Motif. A New Class of Oligopeptides for Sequence-Specific Recognition in the Minor Groove of Double-Helical DNA , 1994 .

[57]  P. Dervan,et al.  OPTIMIZATION OF THE HAIRPIN POLYAMIDE DESIGN FOR RECOGNITION OF THE MINOR GROOVE OF DNA , 1996 .