A Combinatorial Proof of Kneser's Conjecture
暂无分享,去创建一个
[1] I. Kríz. A correction to “Equivariant cohomology and lower bounds for chromatic numbers” , 1992 .
[2] Michael J. Todd,et al. A Constructive Proof of Tucker's Combinatorial Lemma , 1981, J. Comb. Theory, Ser. A.
[3] Imre Bárány,et al. A Short Proof of Kneser's Conjecture , 1978, J. Comb. Theory, Ser. A.
[4] J. Robertson. Some topological properties of certain spaces of differentiable homeomorphisms of disks and spheres. , 1965 .
[5] Noga Alon,et al. The chromatic number of kneser hypergraphs , 1986 .
[6] László Lovász,et al. Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.
[7] Igor Kriz. A correction to “Equivariant cohomology and lower bounds for chromatic numbers” , 1999 .
[8] J. Matou. On the Chromatic Number of Kneser Hypergraphs , 2000 .
[9] Solomon Lefschetz,et al. Introduction to Topology , 1950 .
[10] Karanbir S. Sarkaria,et al. A generalized kneser conjecture , 1990, J. Comb. Theory, Ser. B.
[11] V. Dol'nikov,et al. TRANSVERSALS OF FAMILIES OF SETS IN $ \mathbb{R}^n$ AND A CONNECTION BETWEEN THE HELLY AND BORSUK THEOREMS , 1994 .
[12] Robert M. Freund,et al. Variable Dimension Complexes Part II: A Unified Approach to Some Combinatorial Lemmas in Topology , 2015, Math. Oper. Res..