A mathematical framework for the semantics of symbolic languages representing periodic time

In several areas, including Temporal DataBases (TDB), Presburger arithmetic has been chosen as a standard reference for the semantics of languages representing periodic time, and to study their expressiveness. On the other hand, the proposal of most symbolic languages in the AI literature has not been paired with an adequate semantic counterpart, making the task of studying the expressiveness of such languages and of comparing them a very complex one. In this paper, we first define a representation language which enables us to handle each temporal point as a complex object enriched with all the structure it is immersed in, and then we use it in order to provide a Presburger semantics for classes of symbolic languages coping with periodicity. Finally, we use the semantics to compare a few AI and TDB symbolic approaches.

[1]  James Clifford,et al.  On Periodicity in Temporal Databases , 1995, Inf. Syst..

[2]  Paolo Terenziani,et al.  A modular approach to user-defined symbolic periodicities , 2008, Data Knowl. Eng..

[3]  Gérard Ligozat,et al.  On Generalized Interval Calculi , 1991, AAAI.

[4]  James P. Delgrande,et al.  Expressing Time Intervals and Repetition Within a Formalization of Calendars , 1998, Comput. Intell..

[5]  Massimo Franceschet,et al.  Representing and Reasoning about Temporal Granularities , 2004, J. Log. Comput..

[6]  Paolo Terenziani,et al.  Orthogonal Operators for User-Defined Symbolic Periodicities , 2004, AIMSA.

[7]  Paolo Terenziani,et al.  A lattice of classes of user-defined symbolic periodicities , 2004, Proceedings. 11th International Symposium on Temporal Representation and Reasoning, 2004. TIME 2004..

[8]  Michael Stonebraker,et al.  Implementing calendars and temporal rules in next generation databases , 1994, Proceedings of 1994 IEEE 10th International Conference on Data Engineering.

[9]  Moshe Y. Vardi A temporal fixpoint calculus , 1988, POPL '88.

[10]  M. Baudinet,et al.  Temporal Databases: Beyond Finite Extensions (position paper) , 1993 .

[11]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[12]  Paolo Terenziani,et al.  Integrated Temporal Reasoning with Periodic Events , 2000, Comput. Intell..

[13]  Paolo Terenziani,et al.  Symbolic User-Defined Periodicity in Temporal Relational Databases , 2003, IEEE Trans. Knowl. Data Eng..

[14]  Elisa Bertino,et al.  An access control model supporting periodicity constraints and temporal reasoning , 1998, TODS.

[15]  Martín Abadi,et al.  Temporal Logic Programming , 1989, J. Symb. Comput..

[16]  Angelo Montanari,et al.  Metric and Layered Temporal Logic for Time Granularity , 1996, ILLC dissertation series.

[17]  Sushil Jajodia,et al.  An Algebraic Representation of Calendars , 2004, Annals of Mathematics and Artificial Intelligence.

[18]  Peter B. Ladkin,et al.  Primitives and Units for Time Specification , 1986, AAAI.

[19]  Paolo Terenziani,et al.  Integrating Calendar Dates and Qualitative Temporal Constraints in the Treatment of Periodic Events , 1997, IEEE Trans. Knowl. Data Eng..

[20]  Z. Meral Özsoyoglu,et al.  Modeling and Quering Periodic Temporal Databases , 1995, DEXA Workshop.

[21]  Peter B. Ladkin,et al.  Time Representation: A Taxonomy of Internal Relations , 1986, AAAI.

[22]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .

[23]  N. Koblitz A Course in Number Theory and Cryptography , 1987 .

[24]  Claudio Bettini,et al.  Symbolic representation of user-defined time granularities , 1999, Proceedings. Sixth International Workshop on Temporal Representation and Reasoning. TIME-99.

[25]  Jan Chomicki,et al.  Finite representation of infinite query answers , 1993, TODS.

[26]  Pierre Wolper,et al.  Handling Infinite Temporal Data , 1995, J. Comput. Syst. Sci..

[27]  Zohar Manna,et al.  The Temporal Logic of Reactive and Concurrent Systems , 1991, Springer New York.

[28]  Pierre Wolper Temporal Logic Can Be More Expressive , 1983, Inf. Control..

[29]  Sushil Jajodia,et al.  Solving multi-granularity temporal constraint networks , 2002, Artif. Intell..

[30]  Curtis E. Dyreson,et al.  A Glossary of Time Granularity Concepts , 1997, Temporal Databases, Dagstuhl.

[31]  Hans Jürgen Ohlbach The role of labelled partitionings for modelling periodic temporal notions , 2004, Proceedings. 11th International Symposium on Temporal Representation and Reasoning, 2004. TIME 2004..

[32]  Paolo Terenziani,et al.  A mathematical framework for the semantics of symbolic languages representing periodic time , 2004, Proceedings. 11th International Symposium on Temporal Representation and Reasoning, 2004. TIME 2004..

[33]  Lina Khatib,et al.  DOMAIN‐INDEPENDENT TEMPORAL REASONING WITH RECURRING EVENTS , 1996, Comput. Intell..

[34]  David Forster,et al.  A Representation for Collections of Temporal Intervals , 1986, AAAI.