Recursive POD expansion for reaction-diffusion equation

This paper focuses on the low-dimensional representation of multivariate functions. We study a recursive POD representation, based upon the use of the power iterate algorithm to recursively expand the modes retained in the previous step. We obtain general error estimates for the truncated expansion, and prove that the recursive POD representation provides a quasi-optimal approximation in $$L^2$$L2 norm. We also prove an exponential rate of convergence, when applied to the solution of the reaction-diffusion partial differential equation. Some relevant numerical experiments show that the recursive POD is computationally more accurate than the Proper Generalized Decomposition for multivariate functions. We also recover the theoretical exponential convergence rate for the solution of the reaction-diffusion equation.

[1]  A. Velazquez,et al.  Generation of Aerodynamics Databases Using High-Order Singular Value Decomposition , 2008 .

[2]  Adrien Leygue,et al.  The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer , 2013 .

[3]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[4]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[5]  F. B. Belgacem,et al.  Error bounds for POD expansions of parameterized transient temperatures , 2016 .

[6]  David Néron,et al.  Multiparametric analysis within the proper generalized decomposition framework , 2012 .

[7]  Bogdan I. Epureanu,et al.  Coherent structures and their influence on the dynamics of aeroelastic panels , 2004 .

[8]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[9]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[10]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[11]  J. Reade,et al.  Eigenvalues of Analytic Kernels , 1984 .

[12]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[13]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[14]  A. Nouy A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .

[15]  F. B. Belgacem,et al.  Karhunen–Loève’s truncation error for bivariate functions , 2015 .

[16]  F. Chinesta,et al.  A Short Review in Model Order Reduction Based on Proper Generalized Decomposition , 2018 .

[17]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[18]  C. Bernardi,et al.  Approximations spectrales de problèmes aux limites elliptiques , 2003 .

[19]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[20]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[21]  David Néron,et al.  A rational strategy for the resolution of parametrized problems in the PGD framework , 2013 .

[22]  Masayuki Yano,et al.  A Space-Time Petrov-Galerkin Certified Reduced Basis Method: Application to the Boussinesq Equations , 2014, SIAM J. Sci. Comput..

[23]  Gene H. Golub,et al.  Matrix computations , 1983 .

[24]  Michel Loève,et al.  Probability Theory I , 1977 .