Three decades of Wnts: a personal perspective on how a scientific field developed

[1]  R. Nusse,et al.  Developmental stage and time dictate the fate of Wnt/β-catenin-responsive stem cells in the mammary gland. , 2012, Cell stem cell.

[2]  T. Holstein,et al.  The evolution of the Wnt pathway. , 2012, Cold Spring Harbor perspectives in biology.

[3]  Hans Clevers,et al.  Wnt Signaling through Inhibition of β-Catenin Degradation in an Intact Axin1 Complex , 2012, Cell.

[4]  J. Mao,et al.  Structural and functional studies of LRP6 ectodomain reveal a platform for Wnt signaling. , 2011, Developmental cell.

[5]  W. Weis,et al.  Structural basis of Wnt signaling inhibition by Dickkopf binding to LRP5/6. , 2011, Developmental cell.

[6]  R. Moon,et al.  Crystal structures of the extracellular domain of LRP6 and its complex with DKK1 , 2011, Nature Structural &Molecular Biology.

[7]  Hitoshi Sawa,et al.  Wnt Regulates Spindle Asymmetry to Generate Asymmetric Nuclear β-Catenin in C. elegans , 2011, Cell.

[8]  T. Blauwkamp,et al.  Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells , 2011, Nature Cell Biology.

[9]  J. Nathans,et al.  Genetic mosaic analysis reveals a major role for frizzled 4 and frizzled 8 in controlling ureteric growth in the developing kidney , 2011, Development.

[10]  Hans Clevers,et al.  Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts , 2011, Nature.

[11]  Oleg Simakov,et al.  Expression of secreted Wnt pathway components reveals unexpected complexity of the planarian amputation response. , 2010, Developmental biology.

[12]  N. Copeland,et al.  Harnessing transposons for cancer gene discovery , 2010, Nature Reviews Cancer.

[13]  K. Basler,et al.  Wnt Trafficking: New Insights into Wnt Maturation, Secretion and Spreading , 2010, Traffic.

[14]  R. Nusse,et al.  Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. , 2010, Cell stem cell.

[15]  Christof Niehrs,et al.  On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes , 2010, Development.

[16]  Hans Clevers,et al.  Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. , 2010, Cell stem cell.

[17]  Peter W. Reddien,et al.  Wnt Signaling and the Polarity of the Primary Body Axis , 2009, Cell.

[18]  Xi He,et al.  Wnt/beta-catenin signaling: components, mechanisms, and diseases. , 2009, Developmental cell.

[19]  R. Nusse,et al.  Alternative Wnt Signaling Is Initiated by Distinct Receptors , 2008, Science Signaling.

[20]  Th. Boveri,et al.  Concerning the Origin of Malignant Tumours , 2008 .

[21]  H. Clevers,et al.  Identification of stem cells in small intestine and colon by marker gene Lgr5 , 2007, Nature.

[22]  B. Bowerman,et al.  beta-Catenin asymmetries after all animal/vegetal- oriented cell divisions in Platynereis dumerilii embryos mediate binary cell-fate specification. , 2007, Developmental cell.

[23]  Yoshiki Higuchi,et al.  The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization , 2007, Nature Structural &Molecular Biology.

[24]  R. Moon Faculty Opinions recommendation of Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. , 2006 .

[25]  K. Basler,et al.  Wntless, a Conserved Membrane Protein Dedicated to the Secretion of Wnt Proteins from Signaling Cells , 2006, Cell.

[26]  Michael Boutros,et al.  Secretion of Wnt Ligands Requires Evi, a Conserved Transmembrane Protein , 2006, Cell.

[27]  R. Nusse,et al.  Purified Wnt5a Protein Activates or Inhibits β-Catenin–TCF Signaling Depending on Receptor Context , 2006, PLoS biology.

[28]  C. Niehrs,et al.  An ancient Wnt-Dickkopf antagonism in Hydra , 2006, Development.

[29]  H. Stefánsson,et al.  Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes , 2006, Nature Genetics.

[30]  François Vaillant,et al.  Generation of a functional mammary gland from a single stem cell , 2006, Nature.

[31]  Christof Niehrs,et al.  Casein kinase 1 γ couples Wnt receptor activation to cytoplasmic signal transduction , 2005, Nature.

[32]  Xi He,et al.  A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation , 2005, Nature.

[33]  W. Weis,et al.  β-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation , 2005, Nature Structural &Molecular Biology.

[34]  M. Martindale,et al.  Unexpected complexity of the Wnt gene family in a sea anemone , 2005, Nature.

[35]  R. Nusse,et al.  Convergence of Wnt, ß-Catenin, and Cadherin Pathways , 2004, Science.

[36]  Xi He,et al.  A mechanism for Wnt coreceptor activation. , 2004, Molecular cell.

[37]  H. Varmus,et al.  Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Reinhart Heinrich,et al.  The Roles of APC and Axin Derived from Experimental and Theoretical Analysis of the Wnt Pathway , 2003, PLoS biology.

[39]  Jeffrey D. Axelrod,et al.  A Second Canon , 2003 .

[40]  Nobuyuki Onishi,et al.  The receptor tyrosine kinase Ror2 is involved in non‐canonical Wnt5a/JNK signalling pathway , 2003, Genes to cells : devoted to molecular & cellular mechanisms.

[41]  I. Weissman,et al.  Wnt proteins are lipid-modified and can act as stem cell growth factors , 2003, Nature.

[42]  John B. Thomas,et al.  Wnt-mediated axon guidance via the Drosophila Derailed receptor , 2003, Nature.

[43]  M. Hayden,et al.  Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy , 2002, Nature Genetics.

[44]  Hans Clevers,et al.  Negative Feedback Loop of Wnt Signaling through Upregulation of Conductin/Axin2 in Colorectal and Liver Tumors , 2002, Molecular and Cellular Biology.

[45]  Miikka Vikkula,et al.  LDL Receptor-Related Protein 5 (LRP5) Affects Bone Accrual and Eye Development , 2001, Cell.

[46]  J. Nathans,et al.  Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains , 2001, Nature.

[47]  Stuart A. Aaronson,et al.  Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow , 2001, Nature Cell Biology.

[48]  Michael Kühl,et al.  Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6 , 2001, Current Biology.

[49]  Yan Li,et al.  LDL-receptor-related protein 6 is a receptor for Dickkopf proteins , 2001, Nature.

[50]  J Mao,et al.  Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. , 2001, Molecular cell.

[51]  T. A. Graham,et al.  Crystal Structure of a β-Catenin/Tcf Complex , 2000, Cell.

[52]  T. Akiyama Wnt/beta-catenin signaling. , 2000, Cytokine & growth factor reviews.

[53]  S. Hoffman Research (Genomics) Is Crucial to Attacking Malaria , 2000, Science.

[54]  William C. Skarnes,et al.  An LDL-receptor-related protein mediates Wnt signalling in mice , 2000, Nature.

[55]  Yoichi Kato,et al.  LDL-receptor-related proteins in Wnt signal transduction , 2000, Nature.

[56]  Andrew Tomlinson,et al.  arrow encodes an LDL-receptor-related protein essential for Wingless signalling , 2000, Nature.

[57]  R. Nusse,et al.  Pathway specificity by the bifunctional receptor frizzled is determined by affinity for wingless. , 2000, Molecular cell.

[58]  Y. Jan,et al.  Polarity in Cell Division What Frames Thy Fearful Asymmetry? , 2000, Cell.

[59]  K. Hofmann A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling. , 2000, Trends in biochemical sciences.

[60]  Yusuke Nakamura,et al.  AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1 , 2000, Nature Genetics.

[61]  W. Stanford,et al.  Gene trapping of two novel genes, Hzf and Hhl, expressed in hematopoietic cells , 2000, Mechanisms of Development.

[62]  C. M. Chen,et al.  Wingless transduction by the Frizzled and Frizzled2 proteins of Drosophila. , 1999, Development.

[63]  E. Fuchs,et al.  Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. , 1999, Development.

[64]  J. Nathans,et al.  Frizzled and Dfrizzled-2 function as redundant receptors for Wingless during Drosophila embryonic development. , 1999, Development.

[65]  Hideyuki Okano,et al.  WRM-1 Activates the LIT-1 Protein Kinase to Transduce Anterior/Posterior Polarity Signals in C. elegans , 1999, Cell.

[66]  J. Nathans,et al.  A new secreted protein that binds to Wnt proteins and inhibits their activites , 1999, Nature.

[67]  T. Maniatis,et al.  A ubiquitin ligase complex essential for the NF-kappaB, Wnt/Wingless, and Hedgehog signaling pathways. , 1999, Genes & development.

[68]  E. Wieschaus,et al.  Wingless signaling in the Drosophila embryo: zygotic requirements and the role of the frizzled genes. , 1999, Development.

[69]  R. Carthew,et al.  Use of dsRNA-Mediated Genetic Interference to Demonstrate that frizzled and frizzled 2 Act in the Wingless Pathway , 1998, Cell.

[70]  K. Bhat frizzled and frizzled 2 Play a Partially Redundant Role in Wingless Signaling and Have Similar Requirements to Wingless in Neurogenesis , 1998, Cell.

[71]  A. McMahon,et al.  Sexually dimorphic development of the mammalian reproductive tract requires Wnt-7a , 1998, Nature.

[72]  Hans Clevers,et al.  Drosophila Tcf and Groucho interact to repress Wingless signalling activity , 1998, Nature.

[73]  A. Sparks,et al.  Identification of c-MYC as a target of the APC pathway. , 1998, Science.

[74]  Hans Clevers,et al.  Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4 , 1998, Nature Genetics.

[75]  W. Birchmeier,et al.  Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. , 1998, Science.

[76]  L. Hendershot,et al.  BiP Maintains the Permeability Barrier of the ER Membrane by Sealing the Lumenal End of the Translocon Pore before and Early in Translocation , 1998, Cell.

[77]  Akira Kikuchi,et al.  Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK‐3β and β‐catenin and promotes GSK‐3β‐dependent phosphorylation of β‐catenin , 1998 .

[78]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[79]  G. Struhl,et al.  Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb , 1998, Nature.

[80]  C. Niehrs,et al.  Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction , 1998, Nature.

[81]  Stephen W. Byers,et al.  Serine Phosphorylation-regulated Ubiquitination and Degradation of β-Catenin* , 1997, The Journal of Biological Chemistry.

[82]  William I. Weis,et al.  Three-Dimensional Structure of the Armadillo Repeat Region of β-Catenin , 1997, Cell.

[83]  Bruce Bowerman,et al.  Wnt Signaling Polarizes an Early C. elegans Blastomere to Distinguish Endoderm from Mesoderm , 1997, Cell.

[84]  C. Mello,et al.  Wnt Signaling and an APC-Related Gene Specify Endoderm in Early C. elegans Embryos , 1997, Cell.

[85]  Susan C. Brown,et al.  Utrophin-Dystrophin-Deficient Mice as a Model for Duchenne Muscular Dystrophy , 1997, Cell.

[86]  Wei Hsu,et al.  The Mouse Fused Locus Encodes Axin, an Inhibitor of the Wnt Signaling Pathway That Regulates Embryonic Axis Formation , 1997, Cell.

[87]  Jörg Stappert,et al.  β‐catenin is a target for the ubiquitin–proteasome pathway , 1997 .

[88]  H. Varmus,et al.  Purification and molecular cloning of a secreted, Frizzled-related antagonist of Wnt action. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[89]  D. Gallahan,et al.  The mouse mammary tumor associated gene INT3 is a unique member of the NOTCH gene family (NOTCH4) , 1997, Oncogene.

[90]  J. Nathans,et al.  A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[91]  Hans Clevers,et al.  Activation of β-Catenin-Tcf Signaling in Colon Cancer by Mutations in β-Catenin or APC , 1997, Science.

[92]  Mariann Bienz,et al.  LEF-1, a Nuclear Factor Coordinating Signaling Inputs from wingless and decapentaplegic , 1997, Cell.

[93]  T. Bouwmeester,et al.  Frzb-1 Is a Secreted Antagonist of Wnt Signaling Expressed in the Spemann Organizer , 1997, Cell.

[94]  K. Kinzler,et al.  Constitutive Transcriptional Activation by a β-Catenin-Tcf Complex in APC−/− Colon Carcinoma , 1997, Science.

[95]  Paul Polakis,et al.  Stabilization of β-Catenin by Genetic Defects in Melanoma Cell Lines , 1997, Science.

[96]  A. Gibbons Feathered Dino Wins a Few Friends , 1997, Science.

[97]  Konrad Basler,et al.  pangolinencodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila , 1997, Nature.

[98]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[99]  N. Perrimon,et al.  The segment polarity gene porcupine encodes a putative multitransmembrane protein involved in Wingless processing. , 1996, Genes & development.

[100]  R. Moon,et al.  A frizzled homolog functions in a vertebrate Wnt signaling pathway , 1996, Current Biology.

[101]  H. Horvitz,et al.  The Caenorhabditis elegans gene lin-17, which is required for certain asymmetric cell divisions, encodes a putative seven-transmembrane protein similar to the Drosophila frizzled protein. , 1996, Genes & development.

[102]  B. Herrmann,et al.  Nuclear localization of β-catenin by interaction with transcription factor LEF-1 , 1996, Mechanisms of Development.

[103]  Michael Kühl,et al.  Functional interaction of β-catenin with the transcription factor LEF-1 , 1996, Nature.

[104]  Hans Clevers,et al.  XTcf-3 Transcription Factor Mediates β-Catenin-Induced Axis Formation in Xenopus Embryos , 1996, Cell.

[105]  Jeremy Nathans,et al.  A new member of the frizzled family from Drosophila functions as a Wingless receptor , 1996, Nature.

[106]  R. Moon,et al.  The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. , 1996, Genes & development.

[107]  Paul Polakis,et al.  Binding of GSK3β to the APC-β-Catenin Complex and Regulation of Complex Assembly , 1996, Science.

[108]  S. Pierce,et al.  Overexpression of Xgsk-3 disrupts anterior ectodermal patterning in Xenopus. , 1996, Developmental biology.

[109]  R. Lin,et al.  pop-1 Encodes an HMG box protein required for the specification of a mesoderm precursor in Early C. elegans embryos , 1995, Cell.

[110]  I. Dominguez,et al.  Role of glycogen synthase kinase 3 beta as a negative regulator of dorsoventral axis formation in Xenopus embryos. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[111]  Harold E. Varmus,et al.  Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos , 1995, Nature.

[112]  C. MacArthur,et al.  Fgf-8, activated by proviral insertion, cooperates with the Wnt-1 transgene in murine mammary tumorigenesis , 1995, Journal of virology.

[113]  Andrew P. McMahon,et al.  Dorsalizing signal Wnt-7a required for normal polarity of D–V and A–P axes of mouse limb , 1995, Nature.

[114]  P. Leder,et al.  Insertional mutagenesis identifies a member of the Wnt gene family as a candidate oncogene in the mammary epithelium of int-2/Fgf-3 transgenic mice. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[115]  P. McCrea,et al.  Embryonic axis induction by the armadillo repeat domain of beta- catenin: evidence for intracellular signaling , 1995, The Journal of cell biology.

[116]  P. McCrea,et al.  Overexpression of cadherins and underexpression of β-catenin inhibit dorsal mesoderm induction in early Xenopus embryos , 1994, Cell.

[117]  M. Peifer,et al.  Phosphorylation of the Drosophila adherens junction protein Armadillo: roles for wingless signal and zeste-white 3 kinase. , 1994, Developmental biology.

[118]  R. Nusse,et al.  Biological activity of soluble wingless protein in cultured Drosophila imaginal disc cells , 1994, Nature.

[119]  Norbert Perrimon,et al.  Components of wingless signalling in Drosophila , 1994, Nature.

[120]  Norbert Perrimon,et al.  dishevelled and armadillo act in the Wingless signalling pathway in Drosophila , 1994, Nature.

[121]  F. Masiarz,et al.  Association of the APC gene product with beta-catenin. , 1993, Science.

[122]  K. Kinzler,et al.  Association of the APC tumor suppressor protein with catenins. , 1993, Science.

[123]  P. McCrea,et al.  Induction of a secondary body axis in Xenopus by antibodies to beta- catenin , 1993, The Journal of cell biology.

[124]  N. Perrimon,et al.  wingless signaling acts through zeste-white 3, the drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate , 1992, Cell.

[125]  R. Moon,et al.  Synergistic principles of development: overlapping patterning systems in Xenopus mesoderm induction. , 1992, Development.

[126]  Roel Nusse,et al.  Wnt genes , 1992, Cell.

[127]  A. Sidow,et al.  Diversification of the Wnt gene family on the ancestral lineage of vertebrates. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[128]  K. Kinzler,et al.  Corrections and Clarifications: Multiple Intestinal Neoplasia Caused By a Mutation in the Murine Homolog of the APC Gene , 1992, Science.

[129]  C W Turck,et al.  A homolog of the armadillo protein in Drosophila (plakoglobin) associated with E-cadherin. , 1991, Science.

[130]  M. Capecchi,et al.  Swaying is a mutant allele of the proto-oncogene Wnt-1 , 1991, Cell.

[131]  Margaret Robertson,et al.  Identification and characterization of the familial adenomatous polyposis coli gene , 1991, Cell.

[132]  S. Altschul,et al.  Identification of FAP locus genes from chromosome 5q21. , 1991, Science.

[133]  R Grosschedl,et al.  LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor alpha enhancer function [corrected]. , 1991, Genes & development.

[134]  E. Wieschaus,et al.  The segment polarity gene armadillo interacts with the wingless signaling pathway in both embryonic and adult pattern formation. , 1991, Development.

[135]  K. Jones,et al.  A thymus-specific member of the HMG protein family regulates the human T cell receptor C alpha enhancer. , 1991, Genes & development.

[136]  H. Varmus,et al.  A new nomenclature for int-1 and related genes: The Wnt gene family , 1991, Cell.

[137]  H. Clevers,et al.  Identification and cloning of TCF‐1, a T lymphocyte‐specific transcription factor containing a sequence‐specific HMG box. , 1991, The EMBO journal.

[138]  M. Peifer,et al.  The segment polarity gene armadillo encodes a functionally modular protein that is the Drosophila homolog of human plakoglobin , 1990, Cell.

[139]  A. McMahon,et al.  Expression of multiple novel Wnt-1/int-1-related genes during fetal and adult mouse development. , 1990, Genes & development.

[140]  E. Wieschaus,et al.  Spatial expression of the Drosophila segment polarity gene armadillo is posttranscriptionally regulated by wingless , 1990, Cell.

[141]  Andrew P. McMahon,et al.  The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain , 1990, Cell.

[142]  Mario R. Capecchi,et al.  Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development , 1990, Nature.

[143]  R. Nusse,et al.  Wnt-3, a gene activated by proviral insertion in mouse mammary tumors, is homologous to int-1/Wnt-1 and is normally expressed in mouse embryos and adult brain. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[144]  Andrew P. McMahon,et al.  Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis , 1989, Cell.

[145]  R. Kemler,et al.  The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. , 1989, The EMBO journal.

[146]  P. Cohen,et al.  Multisite phosphorylation of the glycogen‐binding subunit of protein phosphatase‐1G by cyclic AMP‐dependent protein kinase and glycogen synthase kinase‐3 , 1989, FEBS letters.

[147]  T. Magnuson,et al.  Spindle-pole organization during early mouse development. , 1989, Developmental biology.

[148]  P. Adler,et al.  A Drosophila tissue polarity locus encodes a protein containing seven potential transmembrane domains , 1989, Nature.

[149]  H. Varmus,et al.  Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice , 1988, Cell.

[150]  Robert W. Cahn,et al.  Order in disorder , 1988, Nature.

[151]  P. Ingham The molecular genetics of embryonic pattern formation in Drosophila , 1988, Nature.

[152]  P. Adler,et al.  Directional non-cell autonomy and the transmission of polarity information by the frizzled gene of Drosophila , 1987, Nature.

[153]  Detlef Weigel,et al.  The Drosophila homology of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless , 1987, Cell.

[154]  A. McMahon,et al.  Expression of the proto-oncogene int-1 is restricted to specific neural cells in the developing mouse embryo , 1987, Cell.

[155]  H. Varmus,et al.  Expression of the proto-oncogene int-1 is restricted to postmeiotic male germ cells and the neural tube of mid-gestational embryos , 1987, Cell.

[156]  O. Jarrett Retroviruses , 1998, Nature Medicine.

[157]  N E Baker,et al.  Molecular cloning of sequences from wingless, a segment polarity gene in Drosophila: the spatial distribution of a transcript in embryos , 1987, The EMBO journal.

[158]  N. Perrimon,et al.  Multiple functions of segment polarity genes in Drosophila. , 1987, Developmental biology.

[159]  D. Gallahan,et al.  Mammary tumorigenesis in feral mice: identification of a new int locus in mouse mammary tumor virus (Czech II)-induced mammary tumors , 1987, Journal of virology.

[160]  A. Sonnenberg,et al.  Transfection of the int‐1 mammary oncogene in cuboidal RAC mammary cell line results in morphological transformation and tumorigenicity. , 1987, The EMBO journal.

[161]  Anthony M. C. Brown,et al.  A retrovirus vector expressing the putative mammary oncogene int-1 causes partial transformation of a mammary epithelial cell line , 1986, Cell.

[162]  B. Jenks,et al.  The pituitary adrenocorticotropes originate from neural ridge tissue in Xenopus laevis. , 1986, Journal of embryology and experimental morphology.

[163]  G. Peters,et al.  Concerted activation of two potential proto-oncogenes in carcinomas induced by mouse mammary tumour virus , 1986, Nature.

[164]  H. Varmus,et al.  Nucleotide sequence and expression in vitro of cDNA derived from mRNA of int-1, a provirally activated mouse mammary oncogene , 1985, Molecular and cellular biology.

[165]  R. Nusse,et al.  The nucleotide sequence of the human int‐1 mammary oncogene; evolutionary conservation of coding and non‐coding sequences. , 1985, The EMBO journal.

[166]  R. Nusse,et al.  Structure and nucleotide sequence of the putative mammary oncogene int-1; proviral insertions leave the protein-encoding domain intact , 1984, Cell.

[167]  G. Peters,et al.  Tumorigenesis by mouse mammary tumor virus: Proviral activation of a cellular gene in the common integration region int-2 , 1984, Cell.

[168]  D. Cox,et al.  Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15 , 1984, Nature.

[169]  R. Weinberg,et al.  A molecular basis of cancer. , 1983, Scientific American.

[170]  J. Piatigorsky,et al.  Alternative RNA splicing of the murine αA-crystallin gene: Protein-coding information within an intron , 1983, Cell.

[171]  Harold E. Varmus,et al.  Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome , 1982, Cell.

[172]  D. Gubb,et al.  A genetic analysis of the determination of cuticular polarity during development in Drosophila melanogaster. , 1982, Journal of embryology and experimental morphology.

[173]  H. Varmus,et al.  Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas , 1982, Nature.

[174]  W. S. Hayward,et al.  Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis , 1981, Nature.

[175]  H. Varmus,et al.  Analysis of avian leukosis virus DNA and RNA in bursal tumors: Viral gene expression is not required for maintenance of the tumor state , 1981, Cell.

[176]  E. Dubois,et al.  Mating signals control expression of mutations resulting from insertion of a transposable repetitive element adjacent to diverse yeast genes , 1980, Cell.

[177]  C. Nüsslein-Volhard,et al.  Mutations affecting segment number and polarity in Drosophila , 1980, Nature.

[178]  H. Varmus,et al.  Endogenous mammary tumour virus DNA varies among wild mice and segregates during inbreeding , 1979, Nature.

[179]  H. Varmus,et al.  Integration of the DNA of mouse mammary tumor virus in virus-infected normal and neoplastic tissue of the mouse , 1979, Cell.

[180]  A. Sniderman,et al.  Low Density Lipoprotein: A METABOLIC PATHWAY FOR RETURN OF CHOLESTEROL TO THE SPLANCHNIC BED , 1978 .

[181]  V. Chopra,et al.  Effect of the Wingless (wg1) mutation on wing and haltere development in Drosophila melanogaster. , 1976, Developmental biology.

[182]  M. Holmberg No interaction between ultraviolet and X irradiation on chromosome aberrations in cells with trisomy 21 , 1974, Nature.

[183]  J. Calafat,et al.  Genetic transmission of viruses that incite mammary tumor in mice. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[184]  D. Moore,et al.  Purification of the Mouse Mammary Tumour Virus , 1962, Nature.

[185]  B. Campbell Auditory and aversion thresholds of rats for bands of noise. , 1957, Science.

[186]  Hans Grüneberg,et al.  The mutants of drosophila melanogaster , 1944 .

[187]  J. J. Bittner Some Possible Effects of Nursing on the Mammary Gland Tumor Incidence in Mice , 1937 .

[188]  R. Korteweg On the manner in which the disposition to carcinoma of the mammary gland is inherited in mice , 1936, Genetica.

[189]  Percy Groom Handbuch der Laubholzkunde , 1904, Nature.

[190]  S. Laing Glacial Geology of Orkney and Shetland , 1877, Nature.

[191]  W. L. Distant The Migration of Species , 1875, Nature.

[192]  M. Karttunen,et al.  Low density lipoprotein , 2011 .

[193]  Xi He,et al.  Wnt/ β -catenin signaling: components, mechanisms, and diseases , 2010 .

[194]  Jaap Kool,et al.  High throughput insertional mutagenesis screens in mice to identify oncogenic networks , 2009, Nature Reviews Cancer.

[195]  N. Perrimon,et al.  multitransmembrane protein involved in Wingless processing . The segment polarity gene porcupine encodes a putative , 2007 .

[196]  Christof Niehrs,et al.  Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. , 2005, Nature.

[197]  R. Nusse,et al.  Convergence of Wnt, beta-catenin, and cadherin pathways. , 2004, Science.

[198]  R. Lin,et al.  Encodes an HMG Box Protein Required for the Specification of a Mesoderm Precursor in Early C . elegans Embryos , 2004 .

[199]  Randall T Moon,et al.  A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. , 2003, Developmental cell.

[200]  P. McCrea,et al.  Induction of a Secondary Body Axis in Xenopus by Antibodies to-Catenin , 2002 .

[201]  B. Mollet,et al.  A Functional Interaction , 2001 .

[202]  L. Patthy,et al.  The WIF module. , 2000, Trends in biochemical sciences.

[203]  T. A. Graham,et al.  Crystal structure of a beta-catenin/Tcf complex. , 2000, Cell.

[204]  A. Kikuchi,et al.  Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. , 1998, The EMBO journal.

[205]  W J Nelson,et al.  Three-dimensional structure of the armadillo repeat region of beta-catenin. , 1997, Cell.

[206]  S. Byers,et al.  Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. , 1997, The Journal of biological chemistry.

[207]  P. Robbins,et al.  Stabilization of beta-catenin by genetic defects in melanoma cell lines. , 1997, Science.

[208]  R Kemler,et al.  beta-catenin is a target for the ubiquitin-proteasome pathway. , 1997, The EMBO journal.

[209]  R Grosschedl,et al.  Functional interaction of beta-catenin with the transcription factor LEF-1. , 1996, Nature.

[210]  P. Polakis,et al.  Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. , 1996, Science.

[211]  S. Orsulic,et al.  A model system for cell adhesion and signal transduction in Drosophila. , 1993, Development.

[212]  M. Takeichi,et al.  Cadherins: a molecular family important in selective cell-cell adhesion. , 1990, Annual review of biochemistry.

[213]  D. Liang,et al.  A simple and rapid in situ staining method for granulocyte-macrophage colonies in agar culture. , 1988, International journal of cell cloning.

[214]  G. Peters,et al.  Potential oncogene product related to growth factors , 1987, Nature.

[215]  J. Bishop Cellular oncogenes and retroviruses. , 1983, Annual review of biochemistry.

[216]  H. Varmus,et al.  9 Functions and Origins of Retroviral Transforming Genes , 1982 .