Rough set theory applied to lattice theory

In this paper, we intend to study a connection between rough sets and lattice theory. We introduce the concepts of upper and lower rough ideals (filters) in a lattice. Then, we offer some of their properties with regard to prime ideals (filters), the set of all fixed points, compact elements, and homomorphisms.

[1]  Zengtai Gong,et al.  The further investigation of covering-based rough sets: Uncertainty characterization, similarity measure and generalized models , 2010, Inf. Sci..

[2]  Eric C. C. Tsang,et al.  On fuzzy approximation operators in attribute reduction with fuzzy rough sets , 2008, Inf. Sci..

[3]  Ying Sai,et al.  Invertible approximation operators of generalized rough sets and fuzzy rough sets , 2010, Inf. Sci..

[4]  Qinghua Hu,et al.  Fuzzy preference based rough sets , 2010, Inf. Sci..

[5]  Guilin Qi,et al.  Rough operations on Boolean algebras , 2005, Inf. Sci..

[6]  Paul P Wang Information Sciences 2007 , 2007 .

[7]  Bijan Davvaz,et al.  Roughness in MV-algebras , 2010, Inf. Sci..

[8]  Jiye Liang,et al.  A new measure of uncertainty based on knowledge granulation for rough sets , 2009, Inf. Sci..

[9]  Bijan Davvaz,et al.  Roughness based on fuzzy ideals , 2006, Inf. Sci..

[10]  R. Lidl,et al.  Applied abstract algebra , 1984 .

[11]  Bijan Davvaz,et al.  The lower and upper approximations in a quotient hypermodule with respect to fuzzy sets , 2008, Inf. Sci..

[12]  Jun Liu,et al.  Determination of α-resolution in lattice-valued first-order logic LF(X) , 2011, Inf. Sci..

[13]  Chris J. Hinde,et al.  A new extension of fuzzy sets using rough sets: R-fuzzy sets , 2010, Inf. Sci..

[14]  G. Grätzer General Lattice Theory , 1978 .

[15]  Guilong Liu,et al.  Generalized rough sets over fuzzy lattices , 2008, Inf. Sci..

[16]  Yongming Li,et al.  Finite automata theory with membership values in lattices , 2011, Inf. Sci..

[17]  Bijan Davvaz,et al.  On the structure of rough prime (primary) ideals and rough fuzzy prime (primary) ideals in commutative rings , 2008, Inf. Sci..

[18]  Nobuaki Kuroki,et al.  Rough Ideals in Semigroups , 1997, Inf. Sci..

[19]  Paul P. Wang,et al.  Comment on “The lower and upper approximations in a fuzzy group” , 1996, 2009 International Conference on Machine Learning and Cybernetics.

[20]  Bijan Davvaz,et al.  Roughness in Cayley graphs , 2010, Inf. Sci..

[21]  Degang Chen,et al.  Fuzzy rough set theory for the interval-valued fuzzy information systems , 2008, Inf. Sci..

[22]  Bijan Davvaz,et al.  A short note on algebraic T , 2008, Inf. Sci..

[23]  Qinghua Hu,et al.  Soft fuzzy rough sets for robust feature evaluation and selection , 2010, Inf. Sci..

[24]  Cory J. Butz,et al.  Rough set based 1-v-1 and 1-v-r approaches to support vector machine multi-classification , 2007, Inf. Sci..

[25]  Yiyu Yao,et al.  Three-way decisions with probabilistic rough sets , 2010, Inf. Sci..

[26]  Violeta Leoreanu Fotea,et al.  The lower and upper approximations in a hypergroup , 2008, Inf. Sci..

[27]  Naseem Ajmal,et al.  Some constructions of the join of fuzzy subgroups and certain lattices of fuzzy subgroups with sup property , 2009, Inf. Sci..

[28]  Hannes Strass,et al.  RFuzzy: Syntax, semantics and implementation details of a simple and expressive fuzzy tool over Prolog , 2011, Inf. Sci..

[29]  Timos K. Sellis,et al.  Modeling and manipulating the structure of hierarchical schemas for the web , 2008, Inf. Sci..

[30]  Fei Li,et al.  (delta, T)-fuzzy rough approximation operators and the TL-fuzzy rough ideals on a ring , 2007, Inf. Sci..

[31]  Zdzislaw Pawlak,et al.  Rough sets and intelligent data analysis , 2002, Inf. Sci..

[32]  Vassilios Petridis,et al.  A lattice-based neuro-computing methodology for real-time human action recognition , 2011, Inf. Sci..

[33]  B. C. Brookes,et al.  Information Sciences , 2020, Cognitive Skills You Need for the 21st Century.

[34]  Andrzej Skowron,et al.  Rough sets and Boolean reasoning , 2007, Inf. Sci..

[35]  Bijan Davvaz,et al.  Roughness in n , 2008, Inf. Sci..

[36]  Vassilis G. Kaburlasos,et al.  Piecewise-linear approximation of non-linear models based on probabilistically/possibilistically interpreted intervals' numbers (INs) , 2010, Inf. Sci..

[37]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[38]  Murat Diker,et al.  Textural approach to generalized rough sets based on relations , 2010, Inf. Sci..

[39]  Marcos Eduardo Valle,et al.  Permutation-based finite implicative fuzzy associative memories , 2010, Inf. Sci..

[40]  Yiyu Yao,et al.  MGRS: A multi-granulation rough set , 2010, Inf. Sci..

[41]  Zhudeng Wang,et al.  On fuzzy rough sets based on tolerance relations , 2010, Inf. Sci..

[42]  Qi-Mei Xiao,et al.  Rough prime ideals and rough fuzzy prime ideals in semigroups , 2006, Inf. Sci..

[43]  Yee Leung,et al.  Generalized fuzzy rough sets determined by a triangular norm , 2008, Inf. Sci..

[44]  Bijan Davvaz,et al.  Approximations in Hyperrings , 2009, J. Multiple Valued Log. Soft Comput..

[45]  Bijan Davvaz,et al.  Roughness in rings , 2004, Inf. Sci..

[46]  Jesús Medina,et al.  Multi-adjoint t-concept lattices , 2010, Inf. Sci..

[47]  Bijan Davvaz,et al.  Roughness in modules , 2006, Inf. Sci..

[48]  John N. Mordeson,et al.  Rough set theory applied to (fuzzy) ideal theory , 2001, Fuzzy Sets Syst..

[49]  William Zhu,et al.  Relationship between generalized rough sets based on binary relation and covering , 2009, Inf. Sci..

[50]  Bijan Davvaz,et al.  Rough subpolygroups in a factor polygroup , 2006, J. Intell. Fuzzy Syst..