Extrapolation Algorithms for Filtering Series of Functions, and Treating the Gibbs Phenomenon

In this paper, we study the application of some convergence acceleration methods to Fourier series, to orthogonal series, and, more generally, to series of functions. Sometimes, the convergence of these series is slow and, moreover, they exhibit a Gibbs phenomenon, in particular when the solution or its first derivative has discontinuities. It is possible to circumvent, at least partially, these drawbacks by applying a convergence acceleration method (in particular, the ε-algorithm) or by approximating the series by a rational function (in particular, a Padé approximant). These issues are discussed and some numerical results are presented. We will see that adding its conjugate series as an imaginary part to a Fourier series greatly improves the efficiency of the algorithms for accelerating the convergence of the series and reducing the Gibbs phenomenon. Conjugacy for series of functions will also be considered.

[1]  Claude Brezinski,et al.  Pade-Type Approximation and General Orthogonal Polynomials , 1981, The Mathematical Gazette.

[2]  Abdul J. Jerri The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet Approximations , 1998 .

[3]  J. R. Wilton The Gibbs Phenomenon in Fourier-Bessel Series. , 1928 .

[4]  R. A. Silverman,et al.  Special functions and their applications , 1966 .

[5]  Anne Gelb,et al.  Detection of Edges in Spectral Data , 1999 .

[6]  Stefan Paszkowski Approximation uniforme des fonctions continues par les fonctions rationnelles , 1962 .

[7]  J. T. Holdeman A Method for the Approximation of Functions Defined by Formal Series Expansions in Orthogonal Polynomials , 1969 .

[8]  C. Brezinski,et al.  Algorithmes d'Acceleration de la Convergence Etude Numerique. , 1980 .

[9]  Jochem Fleischer,et al.  ANALYTIC CONTINUATION OF SCATTERING AMPLITUDES AND PADE APPROXIMANTS. , 1972 .

[10]  R. A. Silverman,et al.  Special functions and their applications , 1966 .

[11]  C. Bernardi,et al.  Approximations spectrales de problèmes aux limites elliptiques , 2003 .

[12]  William B. Gragg,et al.  LAURENT, FOURIER, AND CHEBYSHEV-PADÉ TABLES , 1977 .

[13]  Yvon Maday,et al.  Analysis of Some Padé-Chebyshev Approximants , 2005, SIAM J. Numer. Anal..

[14]  C. Brezinski,et al.  Extrapolation methods , 1992 .

[15]  P. Wynn,et al.  TRANSFORMATIONS TO ACCELERATE THE CONVERGENCE OF FOURIER SERIES. , 1966 .

[16]  F. Stenger Numerical Methods Based on Sinc and Analytic Functions , 1993 .

[17]  Tobin A. Driscoll,et al.  A Padé-based algorithm for overcoming the Gibbs phenomenon , 2004, Numerical Algorithms.

[18]  Ana C. Matos Recursive computation of Padé–Legendre approximants and some acceleration properties , 2001, Numerische Mathematik.

[19]  P. H. Kloppers,et al.  The Gibbs' phenomenon for Fourier-Bessel series , 2003 .

[20]  Jochem Fleischer,et al.  Nonlinear Padé approximants for Legendre series , 1973 .

[21]  Chi-Wang Shu,et al.  On the Gibbs Phenomenon and Its Resolution , 1997, SIAM Rev..

[22]  Yvon Maday,et al.  Padé–Jacobi Filtering for Spectral Approximations of Discontinuous Solutions , 2003, Numerical Algorithms.

[23]  S. Engelberg,et al.  CONCENTRATION FACTORS , 2022 .

[24]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[25]  C. Brezinski Computational Aspects of Linear Control , 2002 .

[26]  Zélia da Rocha,et al.  Frobenius-Padé approximants for d -orthogonal series: theory and computational aspects , 2005 .

[27]  Ernst Joachim Weniger,et al.  Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series , 1989 .

[28]  Alexander Peyerimhoff,et al.  Lectures on Summability , 1969 .

[29]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[30]  Claude Brezinski Etude de Divers Algorithmes d’Acceleration de la Convergence , 1977 .

[31]  D. Gottlieb,et al.  Numerical analysis of spectral methods , 1977 .

[32]  Adhemar Bultheel,et al.  Laurent Series and their Padé Approximations , 1987 .

[33]  Claude Brezinski,et al.  Extrapolation methods - theory and practice , 1993, Studies in computational mathematics.

[34]  Y. Simon,et al.  The ε-algorithm allows to detect Dirac delta functions , 2004 .

[35]  P. Wynn,et al.  Sequence Transformations and their Applications. , 1982 .