Hyperconcentration for multipartite entanglement via linear optics

We present a hyperconcentration scheme for nonlocal $N$-photon hyperentangled Greenberger-Horne-Zeilinger states. The maximally hyperentangled state, in which $N$ particles are entangled simultaneously in the polarization and the spatial mode, can be obtained with a certain probability from two partially hyperentangled states. The hyperconcentration scheme is based on one polarization parity check measurement, one spatial mode parity check measurement and N-2 single-photon two-qubit measurements. The concentration only requires linear optical elements, which makes it feasible and practical with current technology.

[1]  Fu-Guo Deng,et al.  Practical hyperentanglement concentration for two-photon four-qubit systems with linear optics , 2013, 1306.0050.

[2]  Nathan K Langford,et al.  Generation of hyperentangled photon pairs. , 2005, Physical review letters.

[3]  Fuguo Deng,et al.  One-step deterministic polarization-entanglement purification using spatial entanglement , 2010, 1008.3509.

[4]  Fuguo Deng,et al.  Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement , 2010 .

[5]  Xihan Li,et al.  Hyperconcentration for entanglement in two degrees of freedom , 2013 .

[6]  S. Bose,et al.  PURIFICATION VIA ENTANGLEMENT SWAPPING AND CONSERVED ENTANGLEMENT , 1998, quant-ph/9812013.

[7]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[8]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[9]  Christian Kurtsiefer,et al.  Complete deterministic linear optics Bell state analysis. , 2006, Physical review letters.

[10]  Fuguo Deng One-step error correction for multipartite polarization entanglement , 2011, 1107.0093.

[11]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[12]  G. Vallone,et al.  Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement , 2006, quant-ph/0609080.

[13]  Guang-Can Guo,et al.  Complete Bell-states analysis using hyper-entanglement , 2005 .

[14]  G. Vallone,et al.  Hyperentanglement of two photons in three degrees of freedom , 2008, 0810.4461.

[15]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[16]  Xihan Li Deterministic polarization-entanglement purification using spatial entanglement , 2010, 1010.5301.

[17]  S. Walborn,et al.  Hyperentanglement-assisted Bell-state analysis , 2003, quant-ph/0307212.

[18]  Fu-Guo Deng,et al.  Hyper-parallel photonic quantum computation with coupled quantum dots , 2013, Scientific Reports.

[19]  Yu-Bo Sheng,et al.  Complete hyperentangled-Bell-state analysis for quantum communication , 2010, 1103.0230.

[20]  Jian-Wei Pan,et al.  Practical scheme for entanglement concentration , 2001, quant-ph/0104039.

[21]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[22]  Lan Zhou,et al.  Quantum Entanglement Concentration Based on Nonlinear Optics for Quantum Communications , 2013, Entropy.

[23]  Ye Cao,et al.  Complete Greenberger–Horne–Zeilinger state analyzer using hyperentanglement , 2013, Quantum Inf. Process..

[24]  Paul G. Kwiat,et al.  Hyper-entangled states , 1997 .

[25]  G. Long,et al.  Controlled order rearrangement encryption for quantum key distribution , 2003, quant-ph/0308172.

[26]  Harald Weinfurter,et al.  Embedded Bell-state analysis , 1998 .

[27]  Bin Gu Single-photon-assisted entanglement concentration of partially entangled multiphoton W states with linear optics , 2012 .

[28]  G. Guo,et al.  Optimal entanglement purification via entanglement swapping , 2000, quant-ph/0005125.

[29]  Fu-Guo Deng,et al.  Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity , 2013, 1303.0056.

[30]  Fu-Guo Deng,et al.  Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities , 2013, 1309.0168.

[31]  M. Koashi,et al.  Concentration and purification scheme for two partially entangled photon pairs , 2001, quant-ph/0101042.

[32]  Fu-Guo Deng,et al.  Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. , 2012, Optics express.

[33]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[34]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[35]  Fuguo Deng Optimal nonlocal multipartite entanglement concentration based on projection measurements , 2011, 1112.1355.

[36]  Shengmei Zhao,et al.  Efficient two-step entanglement concentration for arbitrary W states , 2012, 1202.3019.

[37]  B. Zheng,et al.  Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs , 2012, 1202.2190.

[38]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[39]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[40]  Jian-Wei Pan,et al.  Polarization entanglement purification using spatial entanglement. , 2001, Physical review letters.

[41]  Bao-Cang Ren,et al.  General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. , 2014, Optics express.

[42]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[43]  Fuguo Deng,et al.  Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics , 2008, 0806.0115.

[44]  Ali Yildiz Optimal distillation of three-qubit W states , 2010 .