Erosion resistance of C/C-SiC-ZrB2 composites exposed to oxyacetylene torch

[1]  Xue Feng,et al.  Formation mechanisms of characteristic structures on the surface of C/SiC composites subjected to thermal ablation , 2016 .

[2]  Wei Sun,et al.  Ablation behavior of ZrB2–SiC protective coating for carbon/carbon composites , 2015 .

[3]  Erica L. Corral,et al.  Oxidation Behavior of Aerospace Materials in High Enthalpy Flows Using an Oxyacetylene Torch Facility , 2015 .

[4]  Li Wei,et al.  Ablation behavior and mechanism of SiC/Zr–Si–C multilayer coating for PIP-C/SiC composites under oxyacetylene torch flame , 2015 .

[5]  Chengming Jiang,et al.  Carbon nanotube networks on different platforms , 2014 .

[6]  Suhrit Mula,et al.  Surface morphology evolution and ablation mechanism of SiC–Si multiphase ceramic coating on graphite under oxy-acetylene flame , 2014 .

[7]  Hejun Li,et al.  Oxidation pre-treatment to improve the mechanical property and oxidation resistance of Si–Mo–Cr coated C/C composites , 2014 .

[8]  Hejun Li,et al.  Preparation of oxidation protective ZrB2-SiC coating by in-situ reaction method on SiC-coated carbon/carbon composites , 2014 .

[9]  Hejun Li,et al.  Cyclic ablation behavior of C/C–ZrC–SiC composites under oxyacetylene torch , 2014 .

[10]  P. David,et al.  High temperature oxidation of two- and three-dimensional hafnium carbide and silicon carbide coatings , 2014 .

[11]  Xiaohong Shi,et al.  Influence of SiC additive on the ablation behavior of C/C composites modified by ZrB2–ZrC particles under oxyacetylene torch , 2014 .

[12]  Hejun Li,et al.  Microstructures and ablation properties of C/C−SiC−ZrC composites prepared using C/C skeletons with various densities , 2013 .

[13]  Xiaohong Shi,et al.  Ablation in different heat fluxes of C/C composites modified by ZrB2–ZrC and ZrB2–ZrC–SiC particles , 2013 .

[14]  Hejun Li,et al.  ZrB2–SiC coating to protect carbon/carbon composites against ablation , 2013 .

[15]  Hejun Li,et al.  Anti-oxidation and ablation properties of carbon/carbon composites infiltrated by hafnium boride , 2013 .

[16]  Yiguang Wang,et al.  C/SiC–ZrB2–ZrC composites fabricated by reactive melt infiltration with ZrSi2 alloy , 2012 .

[17]  Raffaele Savino,et al.  Plasma wind tunnel testing of ultra-high temperature ZrB2-SiC composites under hypersonic re-entry conditions , 2010 .

[18]  X. Xiong,et al.  Ablation behaviors of carbon/carbon composites with C-SiC-TaC multi-interlayers , 2009 .

[19]  Lai-fei Cheng,et al.  Erosion resistance of needled carbon/carbon composites exposed to solid rocket motor plumes , 2009 .

[20]  Jingyi Deng,et al.  Comparison of thermal and ablation behaviors of C/SiC composites and C/ZrB2–SiC composites , 2009 .

[21]  Jiecai Han,et al.  Ablation behavior of ZrB2-SiC ultra high temperature ceramics under simulated atmospheric re-entry conditions , 2008 .

[22]  Jean-Louis Sans,et al.  Effect of the Machining Method on the Catalycity and Emissivity of ZrB2 and ZrB2–HfB2‐Based Ceramics , 2008 .