Moduli space holography and the finiteness of flux vacua

Abstract A holographic perspective to study and characterize field spaces that arise in string compactifications is suggested. A concrete correspondence is developed by studying two-dimensional moduli spaces in supersymmetric string compactifications. It is proposed that there exist theories on the boundaries of each moduli space, whose crucial data are given by a Hilbert space, an Sl(2, ℂ)-algebra, and two special operators. This boundary data is motivated by asymptotic Hodge theory and the fact that the physical metric on the moduli space of Calabi-Yau manifolds asymptotes near any infinite distance boundary to a Poincaré metric with Sl(2, ℝ) isometry. The crucial part of the bulk theory on the moduli space is a sigma model for group-valued matter fields. It is discussed how this might be coupled to a two-dimensional gravity theory. The classical bulk-boundary matching is then given by the proof of the famous Sl(2) orbit theorem of Hodge theory, which is reformulated in a more physical language. Applying this correspondence to the flux landscape in Calabi-Yau fourfold compactifications it is shown that there are no infinite tails of self-dual flux vacua near any co-dimension one boundary. This finiteness result is a consequence of the constraints on the near boundary expansion of the bulk solutions that match to the boundary data. It is also pointed out that there is a striking connection of the finiteness result for supersymmetric flux vacua and the Hodge conjecture.

[1]  T. Weigand,et al.  A stringy test of the Scalar Weak Gravity Conjecture , 2018, Nuclear Physics B.

[2]  E. Palti,et al.  On supersymmetric AdS$_4$ orientifold vacua , 2020, 2003.13578.

[3]  On the geometry of classifying spaces and horizontal slices , 1999, math/0505579.

[4]  H. Ooguri,et al.  On the Geometry of the String Landscape and the Swampland , 2006, hep-th/0605264.

[5]  Ramifications of Lineland , 2006, hep-th/0604049.

[6]  T. Banks,et al.  Symmetries and Strings in Field Theory and Gravity , 2010, 1011.5120.

[7]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[8]  E. Plauschinn,et al.  Swampland conjectures for type IIB orientifolds with closed-string U(1)s , 2020, Journal of High Energy Physics.

[9]  On flux quantization in M-theory and the effective action , 1996, hep-th/9609122.

[10]  Kostas Skenderis Lecture notes on holographic renormalization , 2002 .

[11]  R. Blumenhagen,et al.  Small Flux Superpotentials for Type IIB Flux Vacua Close to a Conifold , 2020, Fortschritte der Physik.

[12]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[13]  V. Alfaro,et al.  Conformal invariance in quantum mechanics , 1976 .

[14]  D. Hofman,et al.  Charged quantum fields in AdS$_2$ , 2019, SciPost Physics.

[15]  E. Cattani,et al.  DEGENERATING VARIATIONS OF HODGE STRUCTURE , 1989 .

[16]  Zhiqin Lu,et al.  WEIL–PETERSSON GEOMETRY ON MODULI SPACE OF POLARIZED CALABI–YAU MANIFOLDS , 2004, Journal of the Institute of Mathematics of Jussieu.

[17]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[18]  E. Palti,et al.  Infinite distance networks in field space and charge orbits , 2018, Journal of High Energy Physics.

[19]  M. Duff,et al.  Eleven-dimensional origin of string-string duality: A One loop test , 1995, hep-th/9506126.

[20]  T. Weigand,et al.  Tensionless strings and the weak gravity conjecture , 2018, Journal of High Energy Physics.

[21]  -. Max-Planck,et al.  M. Theory , 1998 .

[22]  E. Witten,et al.  CFT's from Calabi–Yau four-folds , 1999, hep-th/9906070.

[23]  C. Schnell The extended locus of Hodge classes , 2014, 1401.7303.

[24]  Counting flux vacua , 2003, hep-th/0307049.

[25]  E. Palti,et al.  The Swampland: Introduction and Review , 2019, Fortschritte der Physik.

[26]  Classification of horizontal $\text{SL}(2)$s , 2014, Compositio Mathematica.

[27]  H. Hironaka Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: II , 1964 .

[28]  Morihiko Saito,et al.  Hodge theory of degenerations, (I): consequences of the decomposition theorem , 2019, Selecta Mathematica.

[29]  Flux Compactification , 2006, hep-th/0610102.

[30]  D. Vassilevich,et al.  Dilaton gravity in two-dimensions , 2002, hep-th/0204253.

[31]  S. Cecotti Moduli spaces of Calabi-Yau d-folds as gravitational-chiral instantons , 2020, Journal of High Energy Physics.

[32]  T. Eguchi,et al.  Distribution of flux vacua around singular points in Calabi-Yau moduli space , 2005, hep-th/0510061.

[33]  P. Alam ‘W’ , 2021, Composites Engineering.

[34]  Fabian Ruehle,et al.  Classifying Calabi–Yau Threefolds Using Infinite Distance Limits , 2019, Communications in Mathematical Physics.

[35]  S. Donaldson,et al.  Nahm's equations and the classification of monopoles , 1984 .

[36]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[37]  L. McAllister,et al.  Vacua with Small Flux Superpotential. , 2019, Physical review letters.

[38]  On the hodge metric of the universal deformation space of Calabi-Yau threefolds , 2001, math/0505582.

[39]  W. Taylor,et al.  Type IIA Moduli Stabilization , 2005, hep-th/0505160.

[40]  ON THE INCOMPLETENESS OF THE WEIL-PETERSSON METRIC ALONG DEGENERATIONS OF CALABI-YAU MANIFOLDS , 1997 .

[41]  Thomas W. Grimm,et al.  Bulk reconstruction in moduli space holography , 2021, Journal of High Energy Physics.

[42]  K. Dasgupta,et al.  M theory, orientifolds and G - flux , 1999, hep-th/9908088.

[43]  Eckart Viehweg,et al.  Quasi-projective moduli for polarized manifolds , 1995, Ergebnisse der Mathematik und ihrer Grenzgebiete.

[44]  F. Denef,et al.  Distributions of flux vacua , 2004, hep-th/0404116.

[45]  M theory on eight manifolds , 1996, hep-th/9605053.

[46]  I. Valenzuela,et al.  Asymptotic flux compactifications and the swampland , 2019, 1910.09549.

[47]  Thomas W. Grimm,et al.  The Swampland Distance Conjecture for Kähler moduli , 2018, Journal of High Energy Physics.

[48]  Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes , 1993, hep-th/9309140.

[49]  T. Weigand,et al.  Emergent strings, duality and weak coupling limits for two-form fields , 2019, Journal of High Energy Physics.

[50]  Thomas W. Grimm,et al.  The effective action of warped M-theory reductions with higher-derivative terms. Part II , 2014, 1507.00343.

[51]  P. Deligné THE HODGE CONJECTURE , 2006 .

[52]  Differential geometry of the mixed Hodge metric , 2014, Communications in Analysis and Geometry.

[53]  N. Hitchin On the construction of monopoles , 1983 .

[54]  C. Teitelboim Gravitation and hamiltonian structure in two spacetime dimensions , 1983 .

[55]  W. Schmid Variation of hodge structure: The singularities of the period mapping , 1973 .

[56]  Zhiqin Lu,et al.  Gauss–Bonnet–Chern theorem on moduli space , 2009, 0902.3839.

[57]  T. Banks,et al.  Constraints on string vacua with spacetime supersymmetry , 1988 .

[58]  Thomas W. Grimm,et al.  The effective action of warped M-theory reductions with higher derivative terms — part I , 2015 .

[59]  P. Deligné,et al.  On the locus of Hodge classes , 1994, alg-geom/9402009.

[60]  I. Valenzuela,et al.  Merging the weak gravity and distance conjectures using BPS extremal black holes , 2020, Journal of High Energy Physics.

[61]  R. Jackiw Lower dimensional gravity , 1985 .

[62]  E. Palti,et al.  Infinite distances in field space and massless towers of states , 2018, Journal of High Energy Physics.

[63]  W. Schmid,et al.  DEGENERATION OF HODGE-STRUCTURES , 1986 .

[64]  Thomas W. Grimm,et al.  Infinite distances and the axion weak gravity conjecture , 2019, Journal of High Energy Physics.

[65]  P. Petropoulos,et al.  Superpotentials in IIA compactifications with general fluxes , 2004, hep-th/0411276.

[66]  D. Harlow TASI Lectures on the Emergence of Bulk Physics in AdS/CFT , 2017, Proceedings of Theoretical Advanced Study Institute Summer School 2017 "Physics at the Fundamental Frontier" — PoS(TASI2017).

[67]  A. P. Braun,et al.  Restrictions on infinite sequences of type IIB vacua , 2011, 1108.1394.

[68]  A. Font,et al.  The Swampland Distance Conjecture and towers of tensionless branes , 2019, Journal of High Energy Physics.

[69]  M. Graña Flux compactifications in string theory: A Comprehensive review , 2005, hep-th/0509003.

[70]  The effective action of type IIA Calabi Yau orientifolds , 2004, hep-th/0412277.

[71]  L. McAllister,et al.  Conifold Vacua with Small Flux Superpotential , 2020, Fortschritte der Physik.

[72]  F. Marchesano,et al.  Instantons and infinite distances , 2019, Journal of High Energy Physics.

[73]  Zhiqin Lu,et al.  Generalized Hodge metrics and BCOV torsion on Calabi-Yau moduli , 2003, math/0310007.

[74]  R. Jackiw,et al.  Conformal quantum mechanics as the CFT1 dual to AdS2 , 2011, 1106.0726.

[75]  C. Vafa,et al.  Topological-anti-topological fusion , 1991 .

[76]  Hodge theory of degenerations, (II): vanishing cohomology and geometric applications , 2020, 2006.03953.

[77]  On the Geometry of Moduli Space of Polarized Calabi-Yau manifolds , 2006, math/0603414.

[78]  Modave lectures on bulk reconstruction in AdS/CFT , 2017, 1711.07787.

[79]  Claire Voisin,et al.  The Hodge Conjecture , 2016, Open Problems in Mathematics.

[80]  Infinite distance and zero gauge coupling in 5D supergravity , 2020, Physical Review D.