On the thermomechanical deformation of silver shape memory nanowires

[1]  Harold S. Park,et al.  Shape memory and pseudoelasticity in metal nanowires. , 2005, Physical review letters.

[2]  Min Zhou,et al.  Pseudoelasticity of Single Crystalline Cu Nanowires Through Reversible Lattice Reorientations , 2005 .

[3]  M. Mehl,et al.  Tetragonal Phase Transformation in Gold Nanowires , 2005 .

[4]  Harold S. Park,et al.  Modeling inelasticity and failure in gold nanowires , 2005 .

[5]  X. Ren,et al.  Physical metallurgy of Ti–Ni-based shape memory alloys , 2005 .

[6]  Harold S. Park,et al.  Stable nanobridge formation in ¿110¿ gold nanowires under tensile deformation , 2005 .

[7]  Peidong Yang,et al.  The Chemistry and Physics of Semiconductor Nanowires , 2005 .

[8]  L. Hector,et al.  Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys , 2004, cond-mat/0412324.

[9]  K. Gall,et al.  Surface stress driven reorientation of gold nanowires , 2004 .

[10]  Rolf Lammering,et al.  Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy , 2004 .

[11]  Zhaokang Hu,et al.  Synthesis of Copper Nanowires via a Complex-Surfactant-Assisted Hydrothermal Reduction Process , 2003 .

[12]  Charles M. Lieber,et al.  Nanoscale Science and Technology: Building a Big Future from Small Things , 2003 .

[13]  Rolf Lammering,et al.  Micro and Macromechanical Investigations of CuAlNi Single Crystal and CuAlMnZn Polycrystalline Shape Memory Alloys , 2002 .

[14]  A. Hasmy,et al.  Thickness induced structural transition in suspended fcc metal nanofilms. , 2002, Physical review letters.

[15]  Steven J. Plimpton,et al.  LENGTH SCALE AND TIME SCALE EFFECTS ON THE PLASTIC FLOW OF FCC METALS , 2001 .

[16]  A. Fazzio,et al.  How do gold nanowires break? , 2001, Physical review letters.

[17]  E. Tosatti,et al.  Structure and evolution of a metallic nanowire-tip junction , 2001 .

[18]  W. Haiss,et al.  Surface stress of clean and adsorbate-covered solids , 2001 .

[19]  D. Ugarte,et al.  Signature of atomic structure in the quantum conductance of gold nanowires. , 2000, Physical review letters.

[20]  Y. Liu,et al.  High strain rate deformation of martensitic NiTi shape memory alloy , 1999 .

[21]  D. Sánchez-Portal,et al.  Stiff Monatomic Gold Wires with a Spinning Zigzag Geometry , 1999, cond-mat/9905225.

[22]  W. Goddard,et al.  Strain Rate Induced Amorphization in Metallic Nanowires , 1999 .

[23]  K. Takayanagi,et al.  Thickness Induced Structural Phase Transition of Gold Nanofilm , 1999 .

[24]  J. C. Hamilton,et al.  Dislocation nucleation and defect structure during surface indentation , 1998 .

[25]  Yukihito Kondo,et al.  Quantized conductance through individual rows of suspended gold atoms , 1998, Nature.

[26]  Hisaaki Tobushi,et al.  Influence of strain rate on superelastic properties of TiNi shape memory alloy , 1998 .

[27]  Habib Mehrez,et al.  Yielding and fracture mechanisms of nanowires , 1997 .

[28]  K. Takayanagi,et al.  GOLD NANOBRIDGE STABILIZED BY SURFACE STRUCTURE , 1997 .

[29]  Stelios Kyriakides,et al.  On the nucleation and propagation of phase transformation fronts in a NiTi alloy , 1997 .

[30]  Laurits Højgaard Olesen,et al.  Quantized conductance in atom-sized wires between two metals. , 1995, Physical review. B, Condensed matter.

[31]  J. Shaw,et al.  Thermomechanical aspects of NiTi , 1995 .

[32]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[33]  Uzi Landman,et al.  Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation, and Fracture , 1990, Science.

[34]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[35]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[36]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .