Finding the Zeros of a Univariate Equation: Proxy Rootfinders, Chebyshev Interpolation, and the Companion Matrix

When a function $f(x)$ is holomorphic on an interval $x \in [a, b]$, its roots on the interval can be computed by the following three-step procedure. First, approximate $f(x)$ on $[a, b]$ by a poly...

[1]  L. Trefethen,et al.  Piecewise smooth chebfuns , 2010 .

[2]  W. Specht,et al.  Die Lage der Nullstellen eines Polynoms. III , 1957 .

[3]  Jun Zhang Symbolic Computation on Complex Polynomial Solution of Differential Equations , 1996, J. Symb. Comput..

[4]  John P. Boyd Computing Zeros on a Real Interval through Chebyshev Expansion and Polynomial Rootfinding , 2002, SIAM J. Numer. Anal..

[5]  R. B. King,et al.  Icosahedral symmetry and the quintic equation , 1992 .

[6]  John P. Boyd Complex coordinate methods for hydrodynamic instabilities and Sturm-Liouville eigenproblems with an interior singularity , 1985 .

[7]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[8]  J. Curtiss Faber Polynomials and the Faber Series , 1971 .

[9]  John P. Boyd,et al.  Numerical, perturbative and Chebyshev inversion of the incomplete elliptic integral of the second kind , 2012, Appl. Math. Comput..

[10]  Cornelius Lanczos,et al.  CORNELIUS LANCZOS COLLECTED PUBLISHED PAPERS WITH COMMENTARIES , 1998 .

[11]  P. Davis Interpolation and approximation , 1965 .

[12]  I. J. Good THE COLLEAGUE MATRIX, A CHEBYSHEV ANALOGUE OF THE COMPANION MATRIX , 1961 .

[13]  John P. Boyd,et al.  Computing the real roots of a Fourier series-plus-linear-polynomial: A Chebyshev companion matrix approach , 2012, Appl. Math. Comput..

[14]  John P. Boyd,et al.  Computing the zeros, maxima and inflection points of Chebyshev, Legendre and Fourier series: solving transcendental equations by spectral interpolation and polynomial rootfinding , 2007 .

[15]  C. Lanczos,et al.  Trigonometric Interpolation of Empirical and Analytical Functions , 1938 .

[16]  John P. Boyd A Chebyshev Polynomial Interval-Searching Method ("Lanczos Economization") for Solving a Nonlinear E , 1995 .

[17]  John P. Boyd,et al.  Numerical experiments on the accuracy of the Chebyshev-Frobenius companion matrix method for finding the zeros of a truncated series of Chebyshev polynomials , 2007 .

[18]  John P. Boyd,et al.  Exponentially-Convergent Strategies for Defeating the Runge Phenomenon for the Approximation of Non-PeriodicFunctions, PartI:Single-IntervalSchemes , 2009 .

[19]  L. Fox,et al.  Chebyshev polynomials in numerical analysis , 1970 .

[20]  John P. Boyd,et al.  Exponentially-convergent strategies for defeating the Runge Phenomenon for the approximation of non-periodic functions, part two: Multi-interval polynomial schemes and multidomain Chebyshev interpolation , 2011 .

[21]  Victor Y. Pan,et al.  Numerical methods for roots of polynomials , 2007 .

[22]  R. M. Corless,et al.  Generalized Companion Matrices in the Lagrange Bases , 2004 .

[23]  Robert M. Corless,et al.  On a Generalized Companion Matrix Pencil for Matrix Polynomials Expressed in the Lagrange Basis , 2007 .

[24]  Rida T. Farouki,et al.  On the optimal stability of the Bernstein basis , 1996, Math. Comput..

[25]  A. Householder The numerical treatment of a single nonlinear equation , 1970 .

[26]  John P. Boyd,et al.  Rootfinding for a transcendental equation without a first guess: polynomialization of Kepler's equation through Chebyshev polynomial expansion of the sine , 2007 .

[27]  J. Boyd Spectral methods using rational basis functions on an infinite interval , 1987 .

[28]  Stanley J. Jacobs,et al.  A pseudospectral method for two-point boundary value problems , 1990 .

[29]  Hans J. Stetter,et al.  Numerical polynomial algebra , 2004 .

[30]  J. Boyd Orthogonal rational functions on a semi-infinite interval , 1987 .

[31]  R. B. King,et al.  An algorithm for calculating the roots of a general quintic equation from its coefficients , 1991 .

[32]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[33]  C. W. Clenshaw,et al.  A method for numerical integration on an automatic computer , 1960 .

[34]  John P. Boyd Polynomial series versus sinc expansions for functions with corner or endpoint singularities , 1986 .

[35]  John P. Boyd Computing the zeros of a Fourier series or a Chebyshev series or general orthogonal polynomial series with parity symmetries , 2007, Comput. Math. Appl..

[36]  John P. Boyd A comparison of companion matrix methods to find roots of a trigonometric polynomial , 2013, J. Comput. Phys..

[37]  S. Bernstein,et al.  Quelques remarques sur l'interpolation , 1918 .

[38]  John P. Boyd Computing real roots of a polynomial in Chebyshev series form through subdivision with linear testing and cubic solves , 2006, Appl. Math. Comput..

[39]  J. David Brown,et al.  Proceedings of the Cornelius Lanczos International Centenary Conference , 1994 .

[40]  R. E. Shafer,et al.  On Quadratic Approximation , 1974 .

[41]  Keith O. Geddes,et al.  Polynomial Approximation by Projections on the Unit Circle , 1975 .

[42]  J. Boyd Large-degree asymptotics and exponential asymptotics for Fourier, Chebyshev and Hermite coefficients and Fourier transforms , 2009 .

[43]  John E. Boyd Computing real roots of a polynomial in Chebyshev series form through subdivision , 2006 .

[44]  R. King,et al.  Beyond the quartic equation , 1996 .

[45]  Lloyd N. Trefethen,et al.  An Extension of MATLAB to Continuous Functions and Operators , 2004, SIAM J. Sci. Comput..

[46]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[47]  Walter Gautschi,et al.  The condition of polynomials in power form , 1979 .

[48]  Tobin A. Driscoll,et al.  Automatic spectral collocation for integral, integro-differential, and integrally reformulated differential equations , 2010, J. Comput. Phys..

[49]  Louis A. Romero,et al.  Roots of Polynomials Expressed in Terms of Orthogonal Polynomials , 2005, SIAM J. Numer. Anal..