Computing non-fragile PI controllers for delay models of TCP/AQM networks

This article focuses on the stabilisation problem of fluid-flow delay models of transmission control protocol/active queue management (TCP/AQM) networks by using a proportional-integral (PI) controller as AQM strategy. More precisely, the complete set of PI controllers that exponentially stabilises the corresponding linear time-delay system is derived. Using the particular geometric properties of this set of the controller parameters, the issues of robustness to uncertainty in the network parameters and to perturbation in the controller coefficients are addressed. Then, a methodology to compute a non-fragile PI AQM controller is provided. Finally, exponential estimates for the closed-loop system solutions, allowing to evaluate the performance of the corresponding PI-controlled closed-loop system, are proposed by using a Lyapunov–Krasovskii functional approach. An illustrative example completes the presentation.

[1]  Deniz Üstebay,et al.  Switching Resilient PI Controllers for Active Queue Management of TCP Flows , 2007, ICNSC.

[2]  Daniel Melchor-Aguilar On the asymptotic stability of proportional-integral AQM controllers supporting TCP flows , 2007 .

[3]  Hitay Özbay,et al.  On the design of AQM supporting TCP flows using robust control theory , 2004, IEEE Transactions on Automatic Control.

[4]  S. Niculescu Memoryless Control with an -Stability Constraint for Time-Delay Systems: An LMI Approach , 1998 .

[5]  Shankar P. Bhattacharyya,et al.  Robust, fragile or optimal? , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[6]  S. Niculescu,et al.  Stability analysis of some classes of TCP/AQM networks , 2006 .

[7]  V. Observation Coefficient,et al.  Comments on "Robust, Fragile, or Optimal?" , 1998 .

[8]  Shankar P. Bhattacharyya,et al.  Robust Control: The Parametric Approach , 1995 .

[9]  Daniel Alejandro Melchor-Aguilar,et al.  Stability Analysis of Proportional-Integral AQM Controllers Supporting TCP Flows , 2007, Computación y Sistemas.

[10]  S. Niculescu H∞ memoryless control with an α-stability constraint for time-delay systems: an LMI approach , 1998, IEEE Trans. Autom. Control..

[11]  Vladimir L. Kharitonov,et al.  Lyapunov matrices for time delay systems , 2005, 2005 2nd International Conference on Electrical and Electronics Engineering.

[12]  T. Mori,et al.  On an estimate of the decay rate for stable linear delay systems , 1982 .

[13]  J. Ackermann,et al.  Robust control , 2002 .

[14]  L. Ahlfors Complex Analysis , 1979 .

[15]  Silviu-Iulian Niculescu,et al.  Estimates of the attraction region for a class of nonlinear time-delay systems , 2006, IMA J. Math. Control. Inf..

[16]  Vladimir L. Kharitonov,et al.  Exponential estimates for time delay systems , 2004, Syst. Control. Lett..

[17]  Donald F. Towsley,et al.  Analysis and design of controllers for AQM routers supporting TCP flows , 2002, IEEE Trans. Autom. Control..

[18]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[19]  Vincenzo Liberatore,et al.  Complete stability region characterization for PI-AQM , 2006, SIGBED.

[20]  S.-I. Niculescu,et al.  Delay effects on stability of interconnected systems. A control perspective , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[21]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[22]  Shankar P. Bhattacharyya,et al.  Comments on "Robust, fragile, or optimal?" [with reply] , 1998, IEEE Trans. Autom. Control..

[23]  Shankar P. Bhattacharyya,et al.  PID Controllers for Time Delay Systems , 2004 .