Hybrid solar cells based on inorganic nanoclusters and conjugated polymers

We investigated blends of semiconducting polymers with copper indium diselenide nanocrystals for photovoltaic applications. Depending on the synthesis, the particles are shielded by different amount of organic surfactants. Different concentrations of these nanoparticles were suspended in the polymer solutions and spin cast onto ITO glass. Solar cells were then produced by evaporation of aluminium as the back contact. Optical, electrical and morphological properties of this new prototype of composite solar cells were investigated.

[1]  D. Su,et al.  A Simple Colloidal Route to Nanocrystalline ZnO/CuInS2 Bilayers , 1999 .

[2]  René A. J. Janssen,et al.  Realization of large area flexible fullerene — conjugated polymer photocells: A route to plastic solar cells , 1999 .

[3]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[4]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[5]  M. Beck,et al.  Thin-film copper indium diselenide prepared by selenization of copper indium oxide formed by spray pyrolysis , 1996 .

[6]  K. Kushiya Improvement of electrical yield in the fabrication of CIGS-based thin-film modules , 2001 .

[7]  Christoph J. Brabec,et al.  Photovoltaic properties of conjugated polymer/methanofullerene composites embedded in a polystyrene matrix , 1999 .

[8]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[9]  D. Meissner,et al.  Photovoltaic properties of nanocrystalline cuins 2 /methanofullerene solar cells , 2002 .

[10]  Niyazi Serdar Sariciftci,et al.  Effects of Postproduction Treatment on Plastic Solar Cells , 2003 .

[11]  C. Stalder,et al.  Photoassisted Oxidation of Water at Beryllium‐Doped Polycrystalline TiO2 Electrodes , 1979 .

[12]  Dieter Meissner,et al.  Hybrid Solar Cells Based on Nanoparticles of CuInS2 in Organic Matrices , 2003 .

[13]  Y. Qian,et al.  Synthesis by a Solvothermal Route and Characterization of CuInSe2 Nanowhiskers and Nanoparticles , 1999 .

[14]  Richard H. Friend,et al.  Electron Trapping in Dye/Polymer Blend Photovoltaic Cells , 2000 .

[15]  Rommel Noufi,et al.  Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin‐film solar cells , 1999 .

[16]  T. Negami,et al.  CuInS2 thin-films solar cells fabricated by sulfurization of oxide precursors , 1997 .

[17]  Omar Isaac Asensio,et al.  Non-vacuum processing of CuIn1−xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks , 2003 .

[18]  M. Fisher,et al.  Nanoparticle Oxides Precursor Inks for Thin film Copper Indium Gallium Selenide (CIGS) Solar Cells , 2001 .

[19]  M. A. Malik,et al.  A Novel Route for the Preparation of CuSe and CuInSe2 Nanoparticles , 1999 .

[20]  K. Fezzaa,et al.  One step electrodeposition of CuInSe2: Improved structural, electronic, and photovoltaic properties by annealing under high selenium pressure , 1996 .