A Deflation Technique for Detecting Multiple Liquid Crystal Equilibrium States
暂无分享,去创建一个
P. E. Farrell | J. H. Adler | D. B. Emerson | S. MacLachlan | P. Farrell | J. Adler | D. Emerson | S. P. MacLachlan
[1] Richard H. Byrd,et al. A Trust Region Algorithm for Nonlinearly Constrained Optimization , 1987 .
[2] Robert B. Meyer,et al. On the existence of even indexed disclinations in nematic liquid crystals , 1973 .
[3] Gerhard Starke,et al. Gauss–Newton Multilevel Methods for Least-Squares Finite Element Computations of Variably Saturated Subsurface Flow , 2000, Computing.
[4] T. Ikeda,et al. Photomobile polymer materials: towards light-driven plastic motors. , 2008, Angewandte Chemie.
[5] J. Ericksen,et al. Inequalities in Liquid Crystal Theory , 1966 .
[6] Mitchell Luskin,et al. Minimum Energy Configurations for Liquid Crystals: Computational Results , 1987 .
[7] P. E. Cladis,et al. Non-singular disclinations of strength S = + 1 in nematics , 1972 .
[8] W. Bangerth,et al. deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.
[9] Iain W. Stewart,et al. The Static and Dynamic Continuum Theory of Liquid Crystals , 2001 .
[10] J. Straley,et al. Physics of liquid crystals , 1974 .
[11] T. Atherton,et al. Orientational transition in a nematic liquid crystal at a patterned surface. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[12] Scott P. MacLachlan,et al. An Energy-Minimization Finite-Element Approach for the Frank-Oseen Model of Nematic Liquid Crystals , 2014, SIAM J. Numer. Anal..
[13] Rahul R. Shah,et al. Principles for Measurement of Chemical Exposure Based on Recognition-Driven Anchoring Transitions in Liquid Crystals , 2001, Science.
[14] Alexander Mendiburu,et al. Multi-start Methods , 2018, Handbook of Heuristics.
[15] J. Lagerwall,et al. A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology , 2012 .
[16] L. Onsager. THE EFFECTS OF SHAPE ON THE INTERACTION OF COLLOIDAL PARTICLES , 1949 .
[17] Peter J. Collings,et al. Liquid Crystals: Nature's Delicate Phase of Matter , 1990 .
[18] T J Atherton,et al. Competition of elasticity and flexoelectricity for bistable alignment of nematic liquid crystals on patterned substrates. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.
[19] Alison Ramage,et al. A Preconditioned Nullspace Method for Liquid Crystal Director Modeling , 2013, SIAM J. Sci. Comput..
[20] O. Baudisch,et al. Über die Einwirkung von Hydrazinhydrat auf spektralreine magnetische Eisenoxyde verschiedener Herstellungsart , 1937 .
[21] A. Isihara,et al. Theory of Liquid Crystals , 1972 .
[22] M. Schadt,et al. Photoaligned bistable twisted nematic liquid crystal displays , 2003 .
[23] Thomas A. Manteuffel,et al. Constrained Optimization for Liquid Crystal Equilibria , 2016, SIAM J. Sci. Comput..
[24] William W. Hager,et al. Updating the Inverse of a Matrix , 1989, SIAM Rev..
[25] Scott P. MacLachlan,et al. Energy Minimization for Liquid Crystal Equilibrium with Electric and Flexoelectric Effects , 2014, SIAM J. Sci. Comput..
[26] J. Ericksen,et al. Hydrostatic theory of liquid crystals , 1962 .
[27] Iam-Choon Khoo,et al. Introduction to Liquid Crystals , 2006, Liquid Crystals.
[28] Anna Pandolfi,et al. A Numerical Investigation on Configurational Distortions in Nematic Liquid Crystals , 2011, J. Nonlinear Sci..
[29] P. Farrell,et al. Distinct solutions of finite-dimensional complementarity problems , 2015, 1510.02433.
[30] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[31] N. Clark,et al. Alignment of liquid crystals with patterned isotropic surfaces. , 2001, Science.
[32] Timothy A. Davis,et al. Finite Element Analysis of the Landau--de Gennes Minimization Problem for Liquid Crystals , 1998 .
[33] V. Fréedericksz,et al. Forces causing the orientation of an anisotropic liquid , 1933 .
[34] Epifanio G. Virga,et al. Variational Theories for Liquid Crystals , 2018 .
[35] Simon W. Funke,et al. Deflation Techniques for Finding Distinct Solutions of Nonlinear Partial Differential Equations , 2014, SIAM J. Sci. Comput..