A Deflation Technique for Detecting Multiple Liquid Crystal Equilibrium States

Multiple equilibrium states arise in many physical systems, including various types of liquid crystal structures. Having the ability to reliably compute such states enables more accurate physical analysis and understanding of experimental behavior. This paper adapts and extends a deflation technique for the computation of multiple distinct solutions arising in the context of modeling equilibrium configurations of nematic and cholesteric liquid crystals. The deflation method is applied as part of an overall free-energy variational approach and is modified to fit the framework of optimization of a functional with pointwise constraints. It is shown that multigrid methods designed for the undeflated systems may be applied to efficiently solve the linear systems arising in the application of deflation. For the numerical algorithm, the deflation approach is interwoven with nested iteration, creating a dynamic and efficient method that further enables the discovery of distinct solutions. Finally, four numerical experiments are performed demonstrating the efficacy and accuracy of the algorithm in detecting important physical phenomena, including bifurcation and disclination behaviors. The final numerical experiment expands the algorithm to model cholesteric liquid crystals and illustrates the full discovery power of the deflation process.

[1]  Richard H. Byrd,et al.  A Trust Region Algorithm for Nonlinearly Constrained Optimization , 1987 .

[2]  Robert B. Meyer,et al.  On the existence of even indexed disclinations in nematic liquid crystals , 1973 .

[3]  Gerhard Starke,et al.  Gauss–Newton Multilevel Methods for Least-Squares Finite Element Computations of Variably Saturated Subsurface Flow , 2000, Computing.

[4]  T. Ikeda,et al.  Photomobile polymer materials: towards light-driven plastic motors. , 2008, Angewandte Chemie.

[5]  J. Ericksen,et al.  Inequalities in Liquid Crystal Theory , 1966 .

[6]  Mitchell Luskin,et al.  Minimum Energy Configurations for Liquid Crystals: Computational Results , 1987 .

[7]  P. E. Cladis,et al.  Non-singular disclinations of strength S = + 1 in nematics , 1972 .

[8]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[9]  Iain W. Stewart,et al.  The Static and Dynamic Continuum Theory of Liquid Crystals , 2001 .

[10]  J. Straley,et al.  Physics of liquid crystals , 1974 .

[11]  T. Atherton,et al.  Orientational transition in a nematic liquid crystal at a patterned surface. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Scott P. MacLachlan,et al.  An Energy-Minimization Finite-Element Approach for the Frank-Oseen Model of Nematic Liquid Crystals , 2014, SIAM J. Numer. Anal..

[13]  Rahul R. Shah,et al.  Principles for Measurement of Chemical Exposure Based on Recognition-Driven Anchoring Transitions in Liquid Crystals , 2001, Science.

[14]  Alexander Mendiburu,et al.  Multi-start Methods , 2018, Handbook of Heuristics.

[15]  J. Lagerwall,et al.  A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology , 2012 .

[16]  L. Onsager THE EFFECTS OF SHAPE ON THE INTERACTION OF COLLOIDAL PARTICLES , 1949 .

[17]  Peter J. Collings,et al.  Liquid Crystals: Nature's Delicate Phase of Matter , 1990 .

[18]  T J Atherton,et al.  Competition of elasticity and flexoelectricity for bistable alignment of nematic liquid crystals on patterned substrates. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Alison Ramage,et al.  A Preconditioned Nullspace Method for Liquid Crystal Director Modeling , 2013, SIAM J. Sci. Comput..

[20]  O. Baudisch,et al.  Über die Einwirkung von Hydrazinhydrat auf spektralreine magnetische Eisenoxyde verschiedener Herstellungsart , 1937 .

[21]  A. Isihara,et al.  Theory of Liquid Crystals , 1972 .

[22]  M. Schadt,et al.  Photoaligned bistable twisted nematic liquid crystal displays , 2003 .

[23]  Thomas A. Manteuffel,et al.  Constrained Optimization for Liquid Crystal Equilibria , 2016, SIAM J. Sci. Comput..

[24]  William W. Hager,et al.  Updating the Inverse of a Matrix , 1989, SIAM Rev..

[25]  Scott P. MacLachlan,et al.  Energy Minimization for Liquid Crystal Equilibrium with Electric and Flexoelectric Effects , 2014, SIAM J. Sci. Comput..

[26]  J. Ericksen,et al.  Hydrostatic theory of liquid crystals , 1962 .

[27]  Iam-Choon Khoo,et al.  Introduction to Liquid Crystals , 2006, Liquid Crystals.

[28]  Anna Pandolfi,et al.  A Numerical Investigation on Configurational Distortions in Nematic Liquid Crystals , 2011, J. Nonlinear Sci..

[29]  P. Farrell,et al.  Distinct solutions of finite-dimensional complementarity problems , 2015, 1510.02433.

[30]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[31]  N. Clark,et al.  Alignment of liquid crystals with patterned isotropic surfaces. , 2001, Science.

[32]  Timothy A. Davis,et al.  Finite Element Analysis of the Landau--de Gennes Minimization Problem for Liquid Crystals , 1998 .

[33]  V. Fréedericksz,et al.  Forces causing the orientation of an anisotropic liquid , 1933 .

[34]  Epifanio G. Virga,et al.  Variational Theories for Liquid Crystals , 2018 .

[35]  Simon W. Funke,et al.  Deflation Techniques for Finding Distinct Solutions of Nonlinear Partial Differential Equations , 2014, SIAM J. Sci. Comput..