Dense HfB2 ceramics fabricated by high-energy ball milling and spark plasma sintering

[1]  H. Lu,et al.  The influence of additive and temperature on thermal shock resistance of ZrB2 based composites fabricated by Spark Plasma Sintering , 2020 .

[2]  H. Baharvandi,et al.  Effects of SiC content on the densification, microstructure, and mechanical properties of HfB 2 –SiC composites , 2020, International Journal of Applied Ceramic Technology.

[3]  J. Dai,et al.  Fabrication and mechanical properties of self-toughening ZrB2–SiC composites from in-situ reaction , 2019, Journal of Advanced Ceramics.

[4]  G. Hilmas,et al.  Two‐step synthesis process for high‐entropy diboride powders , 2019, Journal of the American Ceramic Society.

[5]  Haibo Ouyang,et al.  ZrB2 particles reinforced glass coating for oxidation protection of carbon/carbon composites , 2019, Journal of Advanced Ceramics.

[6]  I. Bogomol,et al.  Spark plasma sintering of ZrB2 powders synthesized by citrate gel method , 2019, International Journal of Refractory Metals and Hard Materials.

[7]  Z. Fu,et al.  Synthesis, densification, and microstructure of TaC‐TaB 2 ‐SiC ceramics , 2018, Journal of the American Ceramic Society.

[8]  Jiayue Xu,et al.  Fabrication and microstructure of ZrB2–ZrC–SiC coatings on C/C composites by reactive melt infiltration using ZrSi2 alloy , 2018, Journal of Advanced Ceramics.

[9]  V. Bhanuprasad,et al.  ZrB2–SiC based composites for thermal protection by reaction sintering of ZrO2+B4C+Si , 2017, Journal of Advanced Ceramics.

[10]  S. Lee,et al.  Effects of high-energy ball milling and reactive spark plasma sintering on the densification of HfC-SiC composites , 2017 .

[11]  E. Ayas,et al.  In-situ synthesis and densification of HfB2 ceramics by the spark plasma sintering technique , 2017 .

[12]  W. Xie,et al.  HfB2-CNTs composites with enhanced mechanical properties prepared by spark plasma sintering , 2017 .

[13]  Guo‐Jun Zhang,et al.  Effect of HfC and SiC on microstructure and mechanical properties of HfB2-based ceramics , 2016 .

[14]  D. Sciti,et al.  Bulk monolithic zirconium and tantalum diborides by reactive and non-reactive spark plasma sintering , 2016 .

[15]  Y. Sakka,et al.  Densification, microstructure evolution and mechanical properties of WC doped HfB2-SiC ceramics , 2015 .

[16]  Zhanjun Wu,et al.  Fabrication and properties of HfB2 ceramics based on micron and submicron HfB2 powders synthesized via carbo/borothermal reduction of HfO2 with B4C and carbon , 2015 .

[17]  Hailong Wang,et al.  The processing and properties of (Zr, Hf)B2–SiC nanostructured composites , 2014 .

[18]  Hailong Wang,et al.  HfB2–SiC composite prepared by reactive spark plasma sintering , 2014 .

[19]  Sung-Churl Choi,et al.  Densification behavior of ZrB2 with Co–WC as additives , 2014 .

[20]  William E Lee,et al.  Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering , 2013 .

[21]  Guo‐Jun Zhang,et al.  Pressureless sintering of HfB2–SiC ceramics doped with WC , 2012 .

[22]  Guo‐Jun Zhang,et al.  Synthesis of submicrometer HfB2 powder and its densification , 2012 .

[23]  A. L. Ortiz,et al.  A study of the oxidation of ZrB2 powders during high-energy ball-milling in air , 2012 .

[24]  Hailong Wang,et al.  Nano‐Hafnium Diboride Powders Synthesized Using a Spark Plasma Sintering Apparatus , 2012 .

[25]  M. Nygren,et al.  Crystal-size dependence of the spark-plasma-sintering kinetics of ZrB2 ultra-high-temperature ceramics , 2012 .

[26]  M. Nygren,et al.  On the crystallite size refinement of ZrB2 by high-energy ball-milling in the presence of SiC , 2011 .

[27]  D. Sciti,et al.  Densification of ZrB2–TaSi2 and HfB2–TaSi2 Ultra‐High‐Temperature Ceramic Composites , 2011 .

[28]  A. L. Ortiz,et al.  Crystallite Size Refinement of ZrB2 by High-Energy Ball Milling , 2009 .

[29]  D. Fang,et al.  Preparation and characterization of high-toughness ZrB2/Mo composites by hot-pressing process , 2009 .

[30]  S. Guo,et al.  Densification of ZrB2-based composites and their mechanical and physical properties: A review , 2009 .

[31]  R. Cardiff,et al.  SLITs suppress tumor growth in vivo by silencing Sdf1/Cxcr4 within breast epithelium. , 2008, Cancer research.

[32]  Y. Kodera,et al.  Synthesis and characterization of dense ultra-high temperature thermal protection materials produced by field activation through spark plasma sintering (SPS): I. Hafnium Diboride , 2006 .

[33]  D. Sciti,et al.  Fast Densification of Ultra‐High‐Temperature Ceramics by Spark Plasma Sintering , 2006 .

[34]  M. Nygren,et al.  Microstructural prototyping of ceramics by kinetic engineering: applications of spark plasma sintering. , 2005, Chemical record.

[35]  A. Bellosi,et al.  Beneficial Effects of AlN as Sintering Aid on Microstructure and Mechanical Properties of Hot‐pressed ZrB2 , 2003 .

[36]  Alida Bellosi,et al.  Effect of the addition of silicon nitride on sintering behaviour and microstructure of zirconium diboride , 2002 .

[37]  S. Rabkin,et al.  Nifedipine does not induce but rather prevents apoptosis in cardiomyocytes. , 2000, European journal of pharmacology.