Optimal Transport between Gaussian random fields

We consider the optimal transport problem between zero mean Gaussian stationary random fields both in the aperiodic and periodic case. We show that the solution corresponds to a weighted Hellinger distance between the multivariate and multidimensional power spectral densities of the random fields. Then, we show that such a distance defines a geodesic, which depends on the weight function, on the manifold of the multivariate and multidimensional power spectral densities.

[1]  Andreas Jakobsson,et al.  Interpolation and Extrapolation of Toeplitz Matrices via Optimal Mass Transport , 2017, IEEE Transactions on Signal Processing.

[2]  A. Krener,et al.  Modeling and estimation of discrete-time Gaussian reciprocal processes , 1990 .

[3]  Johan Karlsson,et al.  The multidimensional circulant rational covariance extension problem: Solutions and applications in image compression , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[4]  Johan Karlsson,et al.  Multidimensional Rational Covariance Extension with Applications to Spectral Estimation and Image Compression , 2015, SIAM J. Control. Optim..

[5]  Johan Karlsson,et al.  Metrics for Power Spectra: An Axiomatic Approach , 2009, IEEE Transactions on Signal Processing.

[6]  Ming-Jun Lai,et al.  Factorization of multivariate positive Laurent polynomials , 2006, J. Approx. Theory.

[7]  Johan Karlsson,et al.  Uncertainty Bounds for Spectral Estimation , 2012, IEEE Transactions on Automatic Control.

[8]  M. Knott,et al.  On the optimal mapping of distributions , 1984 .

[9]  Mattia Zorzi,et al.  Optimal Transport Between Gaussian Stationary Processes , 2021, IEEE Transactions on Automatic Control.

[10]  Hugo J. Woerdeman,et al.  Positive extensions, Fejér-Riesz factorization and autoregressive filters in two variables , 2004 .

[11]  L. Kantorovich On the Translocation of Masses , 2006 .

[12]  Mattia Zorzi,et al.  A New Family of High-Resolution Multivariate Spectral Estimators , 2012, IEEE Transactions on Automatic Control.

[13]  Tryphon T. Georgiou,et al.  Matrix-valued Monge-Kantorovich optimal mass transport , 2013, 52nd IEEE Conference on Decision and Control.

[14]  Tryphon T. Georgiou,et al.  Matricial Wasserstein-1 Distance , 2017, IEEE Control Systems Letters.

[15]  Mattia Zorzi,et al.  An interpretation of the dual problem of the THREE-like approaches , 2014, Autom..

[16]  C. Byrnes,et al.  A Convex Optimization Approach to the Rational Covariance Extension Problem , 1999 .

[17]  Johan Karlsson,et al.  M2-spectral estimation: A relative entropy approach , 2019, Autom..

[18]  Mattia Zorzi,et al.  Empirical Bayesian learning in AR graphical models , 2019, Autom..

[19]  Michele Pavon,et al.  Hellinger Versus Kullback–Leibler Multivariable Spectrum Approximation , 2007, IEEE Transactions on Automatic Control.

[20]  Anders Lindquist,et al.  On the multivariate circulant rational covariance extension problem , 2013, 52nd IEEE Conference on Decision and Control.

[21]  Mattia Zorzi,et al.  Autoregressive identification of Kronecker graphical models , 2020, Autom..

[22]  Michele Pavon,et al.  Time and Spectral Domain Relative Entropy: A New Approach to Multivariate Spectral Estimation , 2011, IEEE Transactions on Automatic Control.

[23]  Tryphon T. Georgiou,et al.  On the Geometry of Covariance Matrices , 2013, IEEE Signal Processing Letters.

[24]  Daniele Alpago,et al.  Identification of Sparse Reciprocal Graphical Models , 2018, IEEE Control Systems Letters.

[25]  Francesca P. Carli,et al.  A Maximum Entropy Solution of the Covariance Extension Problem for Reciprocal Processes , 2011, IEEE Transactions on Automatic Control.

[26]  Johan Karlsson,et al.  Fusion of Sensors Data in Automotive Radar Systems: A Spectral Estimation Approach , 2019, 2019 IEEE 58th Conference on Decision and Control (CDC).

[27]  Johan Karlsson,et al.  Multidimensional Rational Covariance Extension with Approximate Covariance Matching , 2017, SIAM J. Control. Optim..

[28]  Michele Pavon,et al.  A Globally Convergent Matricial Algorithm for Multivariate Spectral Estimation , 2008, IEEE Transactions on Automatic Control.

[29]  Mattia Zorzi,et al.  Multivariate Spectral Estimation Based on the Concept of Optimal Prediction , 2014, IEEE Transactions on Automatic Control.

[30]  Anders Lindquist,et al.  The Circulant Rational Covariance Extension Problem: The Complete Solution , 2012, IEEE Transactions on Automatic Control.

[31]  Mattia Zorzi,et al.  Rational approximations of spectral densities based on the Alpha divergence , 2013, Math. Control. Signals Syst..

[32]  Tryphon T. Georgiou,et al.  A new approach to spectral estimation: a tunable high-resolution spectral estimator , 2000, IEEE Trans. Signal Process..

[33]  Tryphon T. Georgiou,et al.  Kullback-Leibler approximation of spectral density functions , 2003, IEEE Trans. Inf. Theory.

[34]  Tryphon T. Georgiou Relative entropy and the multivariable multidimensional moment problem , 2006, IEEE Transactions on Information Theory.